Skip to main content

Platelets: Structure, Function, and Their Fundamental Contribution to Hemostasis and Pathologic Thrombosis

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 193))

Abstract

Platelets play a critical role in normal hemostasis by stopping blood loss after vascular injury. By adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, and activating the plasma coagulation cascade, primary hemostasis is effected. In synchrony with the end products of the coagulation cascade, predominantly crosslinked fibrin, a more stable clot quickly forms. However, by these same mechanisms, platelets also contribute directly to pathologic vascular thrombosis. In the ongoing search for means to prevent or temper vascular thrombosis while preserving physiologic hemostasis, a better understanding of platelet structure and function is of paramount importance. In this chapter we provide a composite overview of platelets, focusing on their structure, function, and fundamental contribution to normal hemostasis and pathologic thrombosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White JG. Platelet ultrastructure. In Bloom AL, Thomas DP (eds). Haemostasis and Thrombosis, 2nd ed. Edinburgh: Churchill Livingstone 1987:20.

    Google Scholar 

  2. George JN. Studies on platelet plasma membranes. IV. Quantitative analysis of platelet membrane glycoproteins by (15I)-diazotized diiodosulfanilic acid labeling and SDS-polyacrylamide gel electrophoresis. J Lab Clin Med 92:430, 1978.

    Google Scholar 

  3. Nurden AT, Caen JP. Membrane glycoproteins and human platelet function. Br J Haematol 38:155, 1978.

    PubMed  CAS  Google Scholar 

  4. Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s rhrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest 60:555, 1977.

    Google Scholar 

  5. Phillips DR, Agin PP. Platelet plasma membrane glycoproteins. Evidence for the presence of non-equivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem 252:2121, 1977.

    PubMed  CAS  Google Scholar 

  6. Mann KG, Nesheim ME, Church WR, Haley R, Krishnaswamy S. Surface-dependent relations of the vitamin K-dependent enzyme complexes. Blood 76:1, 1990.

    PubMed  CAS  Google Scholar 

  7. Tracy PB. Regulation of thrombin generation at cell surfaces. Semin Thromb Hemost 14:227, 1988.

    PubMed  CAS  Google Scholar 

  8. Zucker-Franklin D. The submembranous fibrils of human blood platelets. J Cell Biol 47:293, 1970.

    Article  PubMed  CAS  Google Scholar 

  9. White JG. The submembrane filaments of blood platelets. Am J Pathol 56:267, 1969.

    PubMed  CAS  Google Scholar 

  10. Fox JE, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transducnon. Association of GP IIb-IIIa, pp60c-src, pp62c-yes, and the p21 ras GTPase-activating protein with the membrane skeleton. J Biol Chem 268:25973, 1993.

    PubMed  CAS  Google Scholar 

  11. White JG. Effects of colchicine and vinca alkaloids on human platelets. I. Influence on platelet microtubules and contractile function. Am J Pathol 53:281, 1968.

    PubMed  CAS  Google Scholar 

  12. Fox JE, Boyles JK, Reynolds CC, Phillips DR. Actin filament content and organization in unstimulated platelets. J Cell Biol 98:1985, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Fox JE. The platelet cytoskeleton. Thromb Haemost 70:884, 1993.

    PubMed  CAS  Google Scholar 

  14. White JG. Electron microscopic studies of platelet secretion. Progr Hemost Thromb 2:49, 1974.

    CAS  Google Scholar 

  15. White JG. Identification of platelet secretion in the electron microscope. Ser Haematolog 6:429, 1973.

    CAS  Google Scholar 

  16. Cutler L, Rodan G, Feinstein MB. Cytochemical localization of adenylate cyclase and of calcium ion, magnesium ion-activated ATP ases in the densetubular system of human blood platelets. Biochim Biophys Acta 512:357, 1978.

    Google Scholar 

  17. Kaser-Glanzmann R, Jakabova M, George JN, Luscher EF. Further characterization of calciumaccumulating vesicles from human blood platelets. Biochim Biophys Acta 512:1, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Weiss HJ. Platelet physiology and abnormalities of platelet function (fitst of two parts). N Engl J Med 293:531, 1975.

    Article  PubMed  CAS  Google Scholar 

  19. Plow EF, Ginsberg MH. The molecular basis of platelet function. In Hoffman R, Benz EJ, Shaltil SJ, Furie B, Cohen HJ (eds). Hematology. Basic Principles and Practice. New York: Churchill Livingstone, 1991:1165.

    Google Scholar 

  20. Roth GJ. Platelets and blood vessels: The adhesion event. Immunol Today 13:100, 1992.

    Article  PubMed  CAS  Google Scholar 

  21. Fauvel F, Grant ME, Legrand YJ, Souchon H, Tobelem G, Jackson DS, Caen JP. Interaction of blood platelets with a microfibrillar extract from adult bovine aorta: Requirement for von Willebrand factor. Proc Natl Acad Sci USA 80:551, 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Birembaut P, Legrand YJ, Bariety J, Bretton R, Fauvel F, Belair MF, Pignaud G, Caen JP. Histochemical and ultrastructural characterization of subendothelial glycoprotein microfibrils interacting with platelets. J Histochem Cytochem 30:75, 1982.

    PubMed  CAS  Google Scholar 

  23. Roth GJ. Developing relationships: Arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood 775, 1991.

    Google Scholar 

  24. Turrito VT, Muggli R, Baumgartner HR. Physical factors influencing platelet deposition on subendothelium: Importance of blood shear rate. Ann NY Acad Sci 285:284, 1977.

    Article  Google Scholar 

  25. Turrito VT, Baumgartner HR. Platelet-surface interactions, in Colman RW, Hirsh J, Marder VJ, Salzman EW (eds). Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Philadelphia: JB Lippincott, 1987:555.

    Google Scholar 

  26. Berridge MJ. Inositol trisphosphate and diacylglycerol: Two interacting second messengers. Ann Rev Biochem 56:159, 1987.

    PubMed  CAS  Google Scholar 

  27. Rink TJ, Sage SO. Calcium signaling in human platelets. Ann Rev Physiol 52:431, 1990.

    Article  CAS  Google Scholar 

  28. Packham MA. Platelet reactions in thrombosis. In Gottlieb AI, Langille BL, Federoff S (eds). Atherosclerosis. Cellular and Molecular Interactions in the Artery Wall. New York: Plenum Press, 1991:209.

    Google Scholar 

  29. Kinlough-Rathbone RL, Packham MA, Reimers HJ, Cazenave JP, Mustard JF. Mechanisms of platelet shape change, aggregation, and release induced by collagen, thrombin, or A23, 187. J Lab Clin Med 90:707, 1977.

    PubMed  CAS  Google Scholar 

  30. Seiler SM, Goldenberg HJ, Michel IM, Hunt JT, Zavoico GB. Multiple pathways of thrombin-induced platelet activation differentiated by desensitization and a thrombin exosite inhibitor. Biochem Biophys Res Commun 181:636, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Greco NJ, Jamieson GA. High and moderate affinity pathways for alpha-thrombin-induced platelet activation. Proc Soc Exp Biol Med 198:792, 1991.

    PubMed  CAS  Google Scholar 

  32. Jamieson GA, Okumura T. Reduced thrombin binding and aggregation in Bernard-Soulier platelets. J Clin Invest 61:861, 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Wicki AN, Clemetson KJ. Structure and function of platelet membrane glycoproteins Ib and V. Effects of leukocyte elastase and other proteases on platelets response to von Willebrand factor and thrombin. Eur J Biochem 153:1, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Cooper HA, Bennett WP, White GC, Wagner H. Hydrolysis of human platelet membrane glycoproteins wich a Serratia manescens metalloprotease: Effect on response to thrombin and von Willebrand factor. Proc Natl Acad Sci USA 79:1433, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057, 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Vu TKH, Wheaton VI, Hung DT, Charo I, Coughlin SR. Domains specifying thrombin-receptor interactions. Nature 353:674, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Coughlin SR, Vu TKH, Hung DT, Wheaton VI. Characterization of a functional thrombin receptor. Issues and opportunities. J Clin Invest 89:351, 1991.

    Google Scholar 

  38. Liu L, Freedman J, Hornstein A, Fenton II JW, Ofusu FA. Binding of thrombin the G protein linked receptor and not to glycoprotein lb, precedes thrombin-mediared platelet activation. Unpublished data.

    Google Scholar 

  39. Furman MI, Benoit SE, Liu L, Barnard MR, Becker RC, Michelson AD. The cleaved peptide of the thrombin receptor is a strong platelet agonist. Unpublished data.

    Google Scholar 

  40. Stenberg PE, Shuman MA, Levine SP, Bainton DF. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 98:748, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Ginsberg MH, Taylor L, Painter RG. The mechanism of thrombin-induced platelet factor 4 secretion. Blood 55:661, 1980.

    PubMed  CAS  Google Scholar 

  42. Holmsen H, Day HJ. The selectivity of the thrombin-induced platelet release reaction: Subcellular localization of released and retained constituents. J Lab Clin Med 75:840, 1970.

    PubMed  CAS  Google Scholar 

  43. Kenney DM, Chao FC. Microtubule inhibitors alter the secretion of beta-glucuronidase by human blood platelets: Involvement of microtubules in release reaction II. J Cell Physiol 96:43, 1978.

    Article  PubMed  CAS  Google Scholar 

  44. Holmsen H, Robkin L, Day HJ. Effects of antimycin A and 2-deoxyglucose on secretion in human platelets. Differential inhibition of the secretion of acid hydrolases and adenine nucleotides. Biochem J 182:413, 1979.

    PubMed  CAS  Google Scholar 

  45. Holmsen H. Platelet secretion. In Colman RW, Hirsh J, Marden VJ, Solzman EW (eds). Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Philadelphia: JB Lippincott, 1987:606.

    Google Scholar 

  46. Heldin CH, Westermark B. Platelet-derived growth factor: Three isoforms and two receptor types. Trends Genet 5:108, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Wenger RH, Wicki AN, Walz A, Kieffer N, Clemetson KJ. Cloning of cDNA coding for connective tissue activating peptide III from a human platelet derived lambda qt II expression library. Blood 73:1498, 1989.

    PubMed  CAS  Google Scholar 

  48. Deuel TF, Keim PS, Farmer M, Heinrikson RL. Amino acid sequence of human platelet factor 4. Proc Natl Acad Sci USA 74:2256, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Viskup RW, Tracy PB, Mann KG. The isolation of human platelet factor V. Blood 69:1188, 1987.

    PubMed  CAS  Google Scholar 

  50. Rand MD, Kalafatis M, Mann KG. Platelet coagulation factor Va: The major secretory platelet phosphoprotein. Blood 83:2180, 1994.

    PubMed  CAS  Google Scholar 

  51. Schwarz HP, Heeb MJ, Wencel-Drake JD, Griffin JH. Identification and quantitation of protein S in human platelets. Blood 66:1452, 1985.

    PubMed  CAS  Google Scholar 

  52. Erickson LA, Ginsberg MH, Loskutoff DJ. Detection and partial characterization of an inhibitor of plasminogen activator in human platelets. J Clin Invest 74:1465, 1984.

    PubMed  CAS  Google Scholar 

  53. Keenan JP, Solum NO. Quantitative studies on the release of platelet fibrinogen by thrombin. Br J Haematol 23:461, 1972.

    PubMed  CAS  Google Scholar 

  54. Majack RA, Goodman LV, Dixit VM. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol 106:415, 1988.

    Article  PubMed  CAS  Google Scholar 

  55. Woods VL Jr, Wolff LE, Keller DM. Resting platelets contain a substantial centrally located pool of glycoprotein IIb-IIIa complex which may be accessible to some but not other extracellular proteins. J Biol Chem 261:15242, 1986.

    PubMed  CAS  Google Scholar 

  56. Niija K, Hudson E, Bader R, Byers-Ward V, Koziol JA, Plow EF, Ruggri Z. Increased surface expression of the membrane glycoprotein Ilb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood 70:475, 1987.

    Google Scholar 

  57. Savage B, Hunter CS, Marker LA, Woods VI Jr, Hanson SR. Thrombin induced increase in surface expression of epitopes on platelet membrane glycoprotein IIb IIIa complex and GMP—140 is a function of platelet age. Blood 74:1007, 1989.

    PubMed  CAS  Google Scholar 

  58. Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest 64:1393. 1979.

    PubMed  CAS  Google Scholar 

  59. Marguerie GA, Ellington TS, Plow EF. Interaction of fibrinogen with its platelet receptor as part of a multiscep reaction in ADP-induced platelet aggregation. J Biol Chem 255:154, 1980.

    PubMed  CAS  Google Scholar 

  60. Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie GA, Ginsberg MH. The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci USA 82:8057, 1985.

    Article  PubMed  CAS  Google Scholar 

  61. Kloczewiak M, Timmons S, Hawiger J. Localization of a site interacting with human platelet receptor on carboxy-terminal segment of human fibrinogen gamma chain. Biochem Biophys Res Common 107:181, 1982.

    Article  CAS  Google Scholar 

  62. Kloczewiak M, Timmons S, Lukas TJ, Hawiger J. Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain. Biochemistry 23:1767, 1984.

    Article  PubMed  CAS  Google Scholar 

  63. Marguerie GA, Plow EF. Interaction of fibrinogen with its platelet receptor: Kinetics and the effect of pH and temperature. Biochemistry 20:1074, 1981.

    Article  PubMed  CAS  Google Scholar 

  64. Poncz M, Fisman R, Hcidenreich R. Structure of the platelet membrane glycoprotein IIb: Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem 262:8476, 1987.

    PubMed  CAS  Google Scholar 

  65. Fitzgerald LA, Steiner B, Rall SC Jr, Lo SS, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone: Identity with platelet glycoprotein IIa and similarity to “integrin.” J Biol Chem 262: 3936, 1987.

    PubMed  CAS  Google Scholar 

  66. Phillips DR, Charo IF, Parisc IV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex. Blood 71:831, 1988.

    PubMed  CAS  Google Scholar 

  67. Wcisel JW, Nagaswami C, Vilaire G, Bennett JS. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 267:16637, 1992.

    Google Scholar 

  68. Plow EF, Pierschbacher MD, Ruoslaht E, Marguerie GA, Ginsberg MH. The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci USA 82:8057, 1985.

    Article  PubMed  CAS  Google Scholar 

  69. Haverstick DM, Cowan JF, Yamada KM, Santoro SA. Inhibition of platelet adhesion to fibronectin, fibrinogen and von Willebrand factor substrates by a synthetic tetra-peptide derived from the cellbinding domain of fibronectin. Blood 66:946, 1985.

    PubMed  CAS  Google Scholar 

  70. Thiagarajan P, Kelley KL. Exposure of binding site for vitronectin on platelets following stimulation. J Biol Chem 263:3035, 1988.

    PubMed  CAS  Google Scholar 

  71. Weiss HJ, Hawiger J, Ruggieri ZM, Turrito VT, Thiagarajon P, Hoffman T. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate. J Clin Invest 83:288, 1989.

    PubMed  CAS  Google Scholar 

  72. Ludlam CA, Bolton AE, Moore S, Cash JD. New rapid method for deep venous thrombosis. Lancet 3:259, 1975.

    Article  Google Scholar 

  73. Bolton AE, Ludlam CA, Pepper DS, Moore S, Cash JD. A radioimmunoassay for platelet factor 4. Thromb Res 8:51, 1976.

    Article  PubMed  CAS  Google Scholar 

  74. Handin RI, McDonough M, Lesch M. Elevation of platelet factor 4 in acute myocarclial infarction: easurement by radioimmunoassay. J Lab Clin Med 91:340, 1978.

    PubMed  CAS  Google Scholar 

  75. White GL II, Morouf AA. Platelet factor 4 level in patients with coronary artery disease. J Lab Clin Med 97:369, 1981.

    PubMed  Google Scholar 

  76. Smitherman TC, Milam M, Woo J, Willerson JT, Frenkel EP. Elevated β thromboglobulin in peripheral venous blood of patients with acute myocardial ischemia: Direct evidence for enhanced platelet reactivity in vivo. Am J Cardiol 48:395, 1981.

    Article  PubMed  CAS  Google Scholar 

  77. Fisher M, Levine PH, Fullerton AL. Fosberg A, Duffy CP, Hoogasian JJ, Drachman DA. Marker proteins of platelet activation in patients with cerebrovascular disease. Arch Neurol 39:692, 1982.

    PubMed  CAS  Google Scholar 

  78. Nossel HL, Wasser J, Kaplan KL, LaGamma KS, Yudelman I, Canheld RE. Sequence of fibrinogen proteolysis and platelet release after intrauterine infusion of hypertonic saline. J Clin Invest 64: 1371, 1979.

    PubMed  CAS  Google Scholar 

  79. Niewiorowski S, Holt JC. Biochemistry and physiology of secreted plareler proteins. In Colmon RW, Hirsch J, Marder VJ, Solzman EW (eds). Hemostasis and Thrombosis, Basic Principles and Clinical Pracrice. Philadelphia: JB Lippincott, 1987:618.

    Google Scholar 

  80. Curtis AD, Kerry PJ. Standardization of β thromboglobulin and platelet factor 4: A collaborative study to investigate the sources and extent of variation in the measurement of platelet specific proteins. Thromb Haemosr 50:686, 1983.

    CAS  Google Scholar 

  81. Musial J, Niewarowski S, Edmunds LH Jr, Addonizio VP Jr, Nicolau KC, Colman RW. In vivo release and turnover of secreted platelet antiheparin protein in rhesus monkey (M. mulatta). Blood 56:596, 1980.

    PubMed  CAS  Google Scholar 

  82. Kaplan KL, Owen J. Plasma levels of (3 thromboglobulin and platelet factor 4 as indices of platele activation in vivo. Blood 57:199, 1981.

    PubMed  CAS  Google Scholar 

  83. Nichols AB, Owen J, Kaplan KL, Sciacco RR, Cannon PJ, Nossel HL. Fibrinopeptide A, platelet factor 4 and β-thromboglobulin levels in coronary heart disease. Blood 60:650, 1982.

    PubMed  CAS  Google Scholar 

  84. Wu KK. Platelet activation mechanisms and markers in arterial thrombosis. J Intern Med 239:17, 1996.

    Article  PubMed  CAS  Google Scholar 

  85. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927, 1962.

    Article  PubMed  CAS  Google Scholar 

  86. Wu KK, Hoak JC. Spontaneous platelet aggregation in arterial insufficiency: Mechanism and implication. Thromb Haemost 35:702, 1976.

    PubMed  CAS  Google Scholar 

  87. Trip MD, Cats VM, von Capelle FJ, Vrecken J. Platelet hyperreactivity and prognosis in survivors of acute myocardial infarction. N Engl J Med 323:1549, 1990.

    Article  Google Scholar 

  88. Wu KK, Hoak JC. A new method for the quantitative detection of platelet aggregates in patients with arterial insufficiency. Lancet 11:924, 1974.

    Article  Google Scholar 

  89. Dougherty JH, Levy DE, Weksler BB. Platelet activation in acute cerebral ischemia. Lancet 1:821, 1977.

    Article  PubMed  Google Scholar 

  90. Wu KK, Hoak JC. Increased platelet aggregates in patients with transient ischemic attacks. Stroke 6:521, 1975.

    PubMed  CAS  Google Scholar 

  91. Preston FE, Ward JD, Marcola BH, Porter NR, Timperley WR. Elevated β thromboglobulin levels and circulating platelet aggregates in diabetic microangiopathy. Lancet 1:238, 1978.

    Article  PubMed  CAS  Google Scholar 

  92. Chiang VL, Castleden WM, Leahy MF. Detection of reversible platelet aggregates in the blood of smokers and ex-smokers with peripheral vascular disease. Med J Aust 156:601, 1992.

    PubMed  CAS  Google Scholar 

  93. Michelson A. Flow cytometry: A clinical test of platelet function. Blood, 87:4925, 1996.

    PubMed  CAS  Google Scholar 

  94. Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein Ilb-Illa complex during platelet activation. J Biol Chem 260:11107, 1985.

    PubMed  CAS  Google Scholar 

  95. Abrams CS, Ellison N, Budzynski AZ, Shattil SJ. Direct detection of activated platelets and platelet-derived microparricles in humans. Blood 75:128, 1990.

    PubMed  CAS  Google Scholar 

  96. Zamarron C, Ginsberg MH, Plow EF. Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb Haemost 64:41, 1990.

    PubMed  CAS  Google Scholar 

  97. Granick HR, Williams SB, McKeown L, Shafer B, Connaghan GD, Hansmann K, Vail M, Magruder L. Endogenous platelet fibrinogen: Its modulation after surface expression is related to size selective access to and conformational changes in the bound fibrinogen. Br J Haematol 80:347, 1992.

    Google Scholar 

  98. Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Valeri CR. In vivo tracking of platelets: Circulatory degranulated platelets rapidly lose surface P-selectin but continue to circulate and function (abstr). Blood 84:320, 1994.

    Google Scholar 

  99. Michelson AD, Benoit SE, Furman MI, Barnard MR, Nurden P, Nurden AT. The platelet surface expression of glycoprotein V is regulated by two independent mechanisms: Proteolysis and a reversible cytoskeletal-mediated redistribution to the surface-connected canalicular system. Blood 1996, in press.

    Google Scholar 

  100. Hourdille P, Heilmann E, Combrie R, Winckler J, Clemetson KJ, Nurden AT. Thrombin induces a rapid redistribution of glycoprotein lb-IX complexes within the membrane systems of activated human platelets. Blood 76:1503, 1990.

    PubMed  CAS  Google Scholar 

  101. Kestin AS, Ellis PA, Barnard MR, Ernchetti A, Rosner BA, Michelson AD. The effect of strenuous exercise on platelet activation state and reactivity. Circulation 88:1502, 1993.

    PubMed  CAS  Google Scholar 

  102. Becker RC, Tracy RP, Bovill EG, Mann KG, Ault K. The clinical use of flow cytometry for assessing platelet activation in acute coronary syndromes. TIMI-III Thrombosis and Anticoagulation Group. Cor Art Dis 5:339, 1994.

    Article  CAS  Google Scholar 

  103. Furman MI, Benoit SE, Becker RC, Borbone M, Weiner BH, Michelson AD. Thrombin receptor mediated platelet reactivity is increased in stable coronary artery disease (abstrt). Circulation 1995.

    Google Scholar 

  104. Redl H, Hammerschmidt DE, Schlag G. Augmentation by platelets of granulocyte aggregation in response to chemotaxins: Studies utilizing an improved cell preparation technique. Blood 61:125, 1983.

    PubMed  CAS  Google Scholar 

  105. Boogaerts MA, Vercellotti G, Roelant C, Malbrain S, Verwilghen RL, Jacob HS. Platelets augment granulocyte aggregation and cytotoxicity: Undercovering of their elfects by improved cell separation techniques using Percoll gradients. Scand J Haemotol 37:229, 1986.

    CAS  Google Scholar 

  106. De Gaetano G, Evangelista V, Ratjar G, Del Moshio A, Cerletti C. Activated polymorphonuclear leukocytes stimulate platelet function. Thromb Res 11:25, 1990.

    Article  Google Scholar 

  107. Oda M, Satouchi K, Yasunage K, Saito K. Polymorphonuclear leukocyte-platelet interactions: Acetylglycerol ether phosphocholine-induced platelet activation under stimulation with chemotactic peptide. J Biochem 100:1117, 1986.

    PubMed  CAS  Google Scholar 

  108. Coeffier E, Joseph D, Prevost MC, Vargaftig BB. Platelet-leukocyte interaction: Activation of rabbit platelets by FMLP-stimulated neutrophils. Br J Pharmacol 92:393, 1987.

    PubMed  CAS  Google Scholar 

  109. Del Muschio A, Evangelista V, Ratjar G, Chen ZM, Cerletti C, De Gaetano G. Platelet activation by polymorphonuclear leukocytes exposed to chemotactic agents. Am J Physiol 258:870, 1990.

    Google Scholar 

  110. Dinerman J, Mehta J, Lawson D, Mehta P. Enhancement of human neutrophil function by platelets: Effects of indomethacin. Thromb Res 15:509, 1988.

    Article  Google Scholar 

  111. Del Moschio A, Corvazier E, Maillet F, Kazatchkine MD, MacLouf J. Platelet dependent induction and amplification of polymorphonuclear leukocytes lysosomal enzyme release. Br J Haematol 72:329, 1989.

    Google Scholar 

  112. Coeffier F, Delautier D, Le-Couedic JP, Chignard M, Denizot Y, Benveniste J. Coopetation between platelets and neutrophils for paf-acether (platelet-activation factor) formation. J Leukoc Biol 47:234, 1990.

    PubMed  CAS  Google Scholar 

  113. Palmantier R, Borgeat P. Throbmin-activated platelets promote leukotriene B, synthesis in polymorphonuclear leukocytes stimulated by physiological agonists. Br J Pharmacol 103:1909, 1991.

    PubMed  CAS  Google Scholar 

  114. Spanguolo PJ, Ellner JJ, Hussiel A. Thromboxane A, mediates augmented polymorphonuclear leukocyte adhesiveness. J Clin Invest 66:46, 1980.

    Google Scholar 

  115. Goldman G, Welbourn R, Klausner JM, Valeri CR, Shtpro D, Hechtman HB. Thromboxane mediates diapedesis after ischemia by activation of neutrophil adhesion receptor interactions with basally expressed intercellular adhesion molecule-1. Circ Res 68:1013, 1991.

    PubMed  CAS  Google Scholar 

  116. Mügge A, Heistad DD, Densen P, Piegors DJ, Armstrong ML, Pudgett RC, Lopez JA. Activation of leukocytes with complement C5a is associated with prostanoid-dependent constriction of large arteries in athetosclerotic monkeys in vivo. Athetosclerosis 95:211, 1992.

    Article  Google Scholar 

  117. Padgett RC, Heistad DD, Mügge A, Armstrong ML, Piegros DL, Lopez JA. Vascular responses to activated leukocytes after regression of arherosderosis. Circ Res 70:423, 1992.

    PubMed  CAS  Google Scholar 

  118. Mullane KM, Fornabaio D. Thromboxane synthetase inhibitors reduce infarct size by a platelet-dependent, aspirin-sensitive mechanism. Circ Res 62:668, 1988.

    PubMed  CAS  Google Scholar 

  119. Wargovich TJ, Mehta J, Nichols W, Ward MB, Lawson D, Franzini D, Conti CR. Reduction in myocardial neutrophil accumulation and infarct size following administration of thromboxane inhibitor U-63. 577A. Am Heart J 114: 1078, 1987.

    Article  PubMed  CAS  Google Scholar 

  120. Huddleston CB, Lupinetti FM, Laws KH, Collins JC, Clanton JA, Hawiger JJ, Oates JA, Hammon JW Jr. The effects of RO-22-4679, a thromboxane synthetase inhibitor on ventricular fibrillation induced by coronary occlusion in conscious dogs. Circ Res 52:608, 1983.

    PubMed  CAS  Google Scholar 

  121. Toki Y, Hieda N, Okumura K, Hashimoto H, Ho T, Ogawa K, Satake T, Ozawa T. Myocardial salvage by a novel thromboxane A synthetase inhibitor in a canine coronary ocdusion-reperfusion model. Arzncim-Forsch/Drug Res 38:224, 1988.

    CAS  Google Scholar 

  122. Grover GJ, Schumacher WA. Effect of the thromboxane receptor antagonist SQ 29.548 on myocardial intarcr size in dogs. J Cardiovasc Pharmacol 11:29, 1988.

    Article  PubMed  CAS  Google Scholar 

  123. Smith EF III, Griswold DE, Egan JW, Hillegass LM, DiMartino MJ. Reduction of myocardial damage and polymorphonuclear leukocyte accumulation following coronary artery occlusion and reperfusion by the thromboxane receptor antagonist BM 13.505. J Cardiovasc Pharmacol 13:715, 1989.

    PubMed  CAS  Google Scholar 

  124. Deuel TF, Huang JS. Platelet derived growth factor: Structure, function and roles in normal and transformed cells. J Clin Invest 74:669, 1984.

    PubMed  CAS  Google Scholar 

  125. Deuel TF, Senior RM, Huang JS. Chemotaxis of monocytes and neutrophils to platelet derived growth factor. J Clin Invest 69:1046, 1982.

    PubMed  CAS  Google Scholar 

  126. Tahara A, Yasuda M, Itagane H, et al. Plasma levels of platelet-derived growth factor in normal subjects and patients with ischemic heart disease. Am Heart J 122:986, 1991.

    Article  PubMed  CAS  Google Scholar 

  127. Deuel TF, Senior KM, Chang D, Griffin GL, Heinrichson RL, Kaiser ET. Platelet factor 4 is chemoractic for neutrophils and monocytes. Proc Natl Acad Sci USA 78:4584, 1981.

    Article  PubMed  CAS  Google Scholar 

  128. Lonky SA, Wohl H. Stimulation of human leukocyte elastase by platelet factor 4. Physiologic, morphologic, and biochemical effects of hamster lungs in vitro. J Clin Invest 67:817, 1981.

    PubMed  CAS  Google Scholar 

  129. Goetzl EJ, Woods JM, Gorman RR. Stimulation of human eosinophil and neutrophil. PMN leukocyte chmotaxis and random migration by 12-L-hydroxy 5,8,10,14 elcosatetraenoic acid (HFTE). J Clin Invest 59:179, 1977.

    PubMed  CAS  Google Scholar 

  130. Maclouf J, Lados BF, Borgeat P. Stimulation of leukotnene biosynthesis in human blood leukocytes by platelet derived 12-hydruperoxy-eicosatetraneoic acid. Proc Natl Acad Sci USA 79:6042, 1982.

    Article  PubMed  CAS  Google Scholar 

  131. Rhee BG, Hall ER, Mclnrire LV. Platelet modlulation of polymorphonuclear leukocyte shear induced aggregation. Blood 67:240, 1986.

    PubMed  CAS  Google Scholar 

  132. Boogaerts MA, Yamada O, Jacob US, Moldow CF. Enhancement of granulocyte-endothelial adherence and granulocyte-induced cytotoxicity by platelet release products. Proc Natl Acad Sci USA 79:7019, 1982.

    Article  PubMed  CAS  Google Scholar 

  133. Goldman G, Welbourn R, Klausner JM, Valeri CR, Shepro D, Hechtman HB. Thromboxane mediates diapedesis after ischemia by activation of neutrophil adhesion receptor interacting with basally expressed intercellular adhesion molecule-1. Circ Res 68:1013, 1991.

    PubMed  CAS  Google Scholar 

  134. Siminiak T, Flores NA, Sheridan DJ. Neurrophil interactions with endothelium and platelets: Possible role in the development of cardiovascular injury. Eur Heart J 16:160, 1995.

    PubMed  CAS  Google Scholar 

  135. Handin RI, Karahin R, Boxer GJ. Enhancement of platelet function by superoxide anion. J Clin Invest 59:959, 1977.

    PubMed  CAS  Google Scholar 

  136. Levine PH, Weinger RS, Simon J, Scoon KL, Krinsky NI. Leukocyte-platelet interaction. Release of hydrogen peroxide by granulocytes as a modulator of platelet reactions. J Clin Invest 57:955, 1976.

    PubMed  CAS  Google Scholar 

  137. Weksler BB. Platelets. In Gallin JI, Godstein IM, Synderman R (eds). Inflammation: Basic Principles and Clinical Correlates. New York: Raven Press. 1988:513.

    Google Scholar 

  138. Mehra P, Mehta J, Lawson D, Krop I, Letts LG. Leukotrienes potentiate the effects of epinephrine and thrombin on human platelet aggregation. Thromb Res 41:731, 1986.

    Article  Google Scholar 

  139. Zhou W, Javors MA, Olson MS. Platelet-activating factor as an intercellular signal in neutrophil-dependent platelet activation. J Immunol 149:1763, 1992

    PubMed  CAS  Google Scholar 

  140. De Gaetano G, Evangelista V, Ratjar G, Del Mashin A, Cerletti C. Activated polymorphonuclear leukocytes stimulate platelet function. Thromb Res 11:25, 1990.

    Article  Google Scholar 

  141. Del Maschio A, Evangelista V, Rarjar G, Chen ZM, Cerletti C, De Gaetano G. Platelet activation by polymorphonuclear leukocytes exposed co chemotactic agents. Am J Physiol 258:870, 1990.

    Google Scholar 

  142. Nash GB. Adhesion between neutrophils and platelets: A modulator of thrombotic and inflammatory events. Thromb Res 74:S3, 1994.

    PubMed  CAS  Google Scholar 

  143. Field EJ, MacLeod I. Platelet adherence to polymorphs. Br Med J 2:388, 1963.

    Article  Google Scholar 

  144. Kjeldsberg C, Swanson J. Platelet satellitism. Blood 43:831, 1974.

    PubMed  CAS  Google Scholar 

  145. Skinnider LF, Musclow CE, Kahn W. Platelet satellitism. An ultrastructural study. Am J Hematol 4:179, 1978.

    Article  PubMed  CAS  Google Scholar 

  146. Joseph J, Welch KMA, D’Andrea G, Riddle JM. Evidence for the presence of red and white cells within “platelet” aggregates formed in whole blood. Thromb Res 53:485, 1989.

    Article  PubMed  CAS  Google Scholar 

  147. Banks DC, Mitchell JRA. Leukocytes and thrombosis. I. A simple test of leukocyte behaviour. Thromb Diasthes Haemorrh (Stuttg.) 30:36, 1973.

    CAS  Google Scholar 

  148. Rasp FL, Clawson CC, Repine JE. Platelets increase neutrophil adherence in vitro to nylon fiber. J Lab Clin Med 97:812, 1981.

    PubMed  CAS  Google Scholar 

  149. Maeda T, Nash GB, Christopher B, Pecsvarady Z, Dormandy JA. Platelet-induced granulocyte aggregation in vitro. Blood Coagul Fibrinolysis 2:699, 1991.

    Article  PubMed  CAS  Google Scholar 

  150. Jungi TW, Spycher MO, Nydegger UE, Barandun S. Platelet-leukocyte interaction: Selective binding of thrombin-stimulated platelets to human monocytes, polymorphonuclear leukocytes, and related cell lines. Blood 67:629, 1986.

    PubMed  CAS  Google Scholar 

  151. Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutfophils. Blood 75:550, 1990.

    PubMed  CAS  Google Scholar 

  152. Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B. PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305, 1989.

    Article  PubMed  CAS  Google Scholar 

  153. McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 84:92, 1989.

    PubMed  CAS  Google Scholar 

  154. Beckstead JH, Stenberg PE, McEver RP, Shuman MA, Bainton DF. Immunohistochemical localization of membrane and alpha-granule proteins in human megakaryocytes. Blood 67:285, 1986.

    PubMed  CAS  Google Scholar 

  155. Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR. Activated and unactivated platelet adhesion to monocytes and neutrophils. Blood 78:1760, 1991.

    PubMed  CAS  Google Scholar 

  156. Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR. Dynamics of leukocyte-platelet adhesion in whole blood. Blood 78:1730, 1991.

    PubMed  CAS  Google Scholar 

  157. Larsen E, Palabrica T, Sajer S, Gilbert GE, Wagner DD, Furie BC, Furie B. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell 63:467, 1990.

    Article  PubMed  CAS  Google Scholar 

  158. Moore KL, Varki A, McEver RP. GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction. J Cell Biol 112:491, 1991.

    Article  PubMed  CAS  Google Scholar 

  159. Corral L, Singer MS, Macher BA, Rosen SD. Requirement for sialic acid on neutrophils in a GMP-140 (PADGEM) mediated adhesive interaction with activated platelets. Biochem Biophys Res Commun 172:1349, 1990.

    Article  PubMed  CAS  Google Scholar 

  160. Spangenberg P, Redlich H, Bergmann I, Lösche W, Gotzrath M, Kehrel B. The platelet glycoprotein IIb/IlIa complex is involved in the adhesion of activated platelets to leukocytes. Thromb Haemost 70:514, 1993.

    PubMed  CAS  Google Scholar 

  161. Kroll MH, Schafer AJ. Biochemical mechanisms of platelet activation. Blood 74:1181, 1989.

    PubMed  CAS  Google Scholar 

  162. Coller BS. Platelets in cardiovascular thrombosis and thromboiysis. In The Heart and Cardiovascular System. H.A. Fozzard, E. Haber, R. Jennings, A.M. Katz, and H.E. Morgan, editors. Raven Press, Ltd., New York 219.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Spencer, F.A., Becker, R.C. (1997). Platelets: Structure, Function, and Their Fundamental Contribution to Hemostasis and Pathologic Thrombosis. In: Becker, R.C. (eds) Textbook of Coronary Thrombosis and Thrombolysis. Developments in Cardiovascular Medicine, vol 193. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33754-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33754-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9923-0

  • Online ISBN: 978-0-585-33754-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics