Skip to main content

Role of Viruses in the Development of Squamous Cell Cancer and Melanoma

  • Chapter
Sunlight, Vitamin D and Skin Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 624))

Abstract

In this chapter, the evidence for the role of human papilloma virus (HPV) in the pathogenesis of squamous cell cancer of the skin will be reviewed. Considerable dispute exists questioning the etiological role of HPV. This is due to the low copy number of HPV DNA in skin cancers and additional cofactors such as UV exposure, immunosuppression, light skin color and hyperproliferative skin disease as well as the genetic background of the host. These additional cofactors are probably required because of the weak transforming activity of cutaneous HPV types in contrast to high-risk genital HPV strains.

On a different note, the involvement of viruses in the etiology of melanoma has only recently been suggested. Melanoma-associated retrovirus (MelARV) has been detected in mice and men and was shown to subvert immunosurveillance besides insertional mutagenesis. The state of the art of viral participation in melanomagenesis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orth G. Genetics of epidermodysplasia verruciformis: Insights into host defense against papillomaviruses. Semin Immunol 2006;18:362–374.

    Article  PubMed  CAS  Google Scholar 

  2. Berkhout RJ, Bouwes Bavinck JN, ter Schegget J. Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J Clin Microbiol 2000;38:2087–2096.

    PubMed  CAS  Google Scholar 

  3. Harwood CA, Surentheran T, McGregor JM et al. Human papillomavirus infection and nonmelanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol 2000;61:289–297.

    Article  PubMed  CAS  Google Scholar 

  4. Wieland U, Ritzkowsky A, Stoltidis M et al. Communication: papillomavirus DNA in basal cell carcinomas of immunocompetent patients: an accidental association? J Invest Dermatol 2000;115:124–128.

    Article  PubMed  CAS  Google Scholar 

  5. Meyer T, Arndt R, Christophers E et al. Frequency and spectrum of HPV types detected in cutaneous squamous-cell carcinomas depend on the HPV detection system: a comparison of four PCR assays. Dermatology 2000;201:204–211.

    Article  PubMed  CAS  Google Scholar 

  6. Strauss S, Desselberger U, Gray JJ. Detection of genital and cutaneous human papillomavirus types: differences in the sensitivity of generic PCRs and consequences for clinical virological diagnosis. Br J Biomed Sci 2000;57:221–225.

    PubMed  CAS  Google Scholar 

  7. Boxman IL, Berkhout RJ, Mulder LH et al. Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol 1997;108:712–715.

    Article  PubMed  CAS  Google Scholar 

  8. Antonsson A, Forslund O, Ekberg H et al. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol 2000;74:11636–11641.

    Article  PubMed  CAS  Google Scholar 

  9. de Villiers EM, Lavergne D, McLaren K et al. Prevailing papillomavirus types in nonmelanoma carcinomas of the skin in renal allograft recipients. Int J Cancer 1997;73:356–361.

    Article  PubMed  Google Scholar 

  10. de Villiers EM, Fauquet C, Broker TR et al. Classification of papillomaviruses. Virology 2004;324:17–27.

    Article  PubMed  Google Scholar 

  11. Alotaibi L, Provost N, Gagnon S et al. Diversity of cutaneous human papillomavirus types in individuals with and without skin lesion. J Clin Virol 2006;36:133–140.

    Article  PubMed  CAS  Google Scholar 

  12. Forslund O, Ly H, Reid C et al. A broad spectrum of human papillomavirus types is present in the skin of Australian patients with nonmelanoma skin cancers and solar keratosis. Br J Dermatol 2003;149:64–73.

    Article  PubMed  CAS  Google Scholar 

  13. Weissenborn SJ, Nindl I, Purdie K et al. Human papillomavirus-DNA loads in actinic keratoses exceed those in nonmelanoma skin cancers. J Invest Dermatol 2005;125:93–97.

    Article  PubMed  CAS  Google Scholar 

  14. Struijk L, Hall L, van der Meijden E et al. Markers of cutaneous human papillomavirus infection in individuals with tumor-free skin, actinic keratoses and squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2006;15:529–535.

    Article  PubMed  CAS  Google Scholar 

  15. Harwood CA, Surentheran T, Sasieni P et al. Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. Br J Dermatol 2004;150:949–957.

    Article  PubMed  CAS  Google Scholar 

  16. Willman JH, Heinz D, Golitz LE et al. Correlation of pl6 and pRb expression with HPV detection in Bowens disease. J Cutan Pathol 2006;33:629–633.

    Article  PubMed  Google Scholar 

  17. Lu S, Syrjanen K, Havu VK et al. Failure to demonstrate human papillomavirus (HPV) involvement in Bowens disease of the skin. Arch Dermatol Res 1996;289:40–45.

    Article  PubMed  CAS  Google Scholar 

  18. Harwood CA, Proby CM, McGregor JM et al. Clinicopathologic features of skin cancer in organ transplant recipients: a retrospective case-control series. J Am Acad Dermatol 2006;54:290–300.

    Article  PubMed  Google Scholar 

  19. Steger G, Olszewsky M, Stockfleth E et al. Prevalence of antibodies to human papillomavirus type 8 in human sera. J Virol 1990;64:4399–4406.

    PubMed  CAS  Google Scholar 

  20. Stark S, Petridis AK, Ghim SJ et al. Prevalence of antibodies against virus-like particles of Epidermodysplasia verruciformis-associated HPV8 in patients at risk of skin cancer. J Invest Dermatol 1998;111:696–701.

    Article  PubMed  CAS  Google Scholar 

  21. Bouwes Bavinck JN, Stark S, Petridis AK et al. The presence of antibodies against virus-like particles of epidermodysplasia verruciformis-associated humanpapillomavirus type 8 in patients with actinic keratoses. Br J Dermatol 2000;142:103–109.

    Article  PubMed  CAS  Google Scholar 

  22. Masini C, Fuchs PG, Gabrielli F et al. Evidence for the association of human papillomavirus infection and cutaneous squamous cell carcinoma in immunocompetent individuals. Arch Dermatol 2003;139:890–894.

    Article  PubMed  Google Scholar 

  23. Jackson S, Storey A. E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene 2000;19:592–598.

    Article  PubMed  CAS  Google Scholar 

  24. Caldeira S, Zehbe I, Accardi R et al. The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 2003;77:2195–2206.

    Article  PubMed  CAS  Google Scholar 

  25. Smola-Hess S, Pflster H. Interaction of papillomaviral oncoproteins with cellular factors. In: Holzenburg A, Bogner E, eds. Structure-Function Relationships of Human Pathogenic Viruses. New York: Kluver Academic/Plenum Publishers, 2002;431–461.

    Chapter  Google Scholar 

  26. Pfister H, Ter Schegget J. Role of HPV in cutaneous premalignant and malignant tumors. Clin Dermatol 1997;15:335–347.

    Article  PubMed  CAS  Google Scholar 

  27. Purdie KJ, Pennington J, Proby CM et al. The promoter of a novel human papillomavirus (HPV77) associated with skin cancer displays UV responsiveness, which is mediated through a consensus p53 binding sequence. EMBO J 1999;18:5359–5369.

    Article  PubMed  CAS  Google Scholar 

  28. Frazer IH, Thomas R, Zhou J et al. Potential strategies utilised by papillomavirus to evade host immunity. Immunol Rev 1999;168:131–142.

    Article  PubMed  CAS  Google Scholar 

  29. Leong SP, Muller J, Yetter RA et al. Expression and modulation of a retrovirus-associated antigen by murine melanoma cells. Cancer Res 1988;48:4954–4958.

    PubMed  CAS  Google Scholar 

  30. Eisenthal A, Lafreniere R, Lefor AT et al. Effect of anti-B16 melanoma monoclonal antibody on established murine B16 melanoma liver metastases. Cancer Res 1987;47:2771–2776.

    PubMed  CAS  Google Scholar 

  31. Li M, Muller J, Xu F et al. Inhibition of melanoma-associated antigen expression and ecotropic retrovirus production in B16BL/6 melanoma cells transfected with major histocompatibility complex class I genes. Cancer Res 1996;56:4464–4474.

    PubMed  CAS  Google Scholar 

  32. King SR, Berson BJ, Risser R. Mechanism of interaction between endogenous ecotropic murine leukemia viruses in (BALB/c X C57BL/6) hybrid cells. Virology 1988;162:1–11.

    Article  PubMed  CAS  Google Scholar 

  33. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. LM02-associated clonal T-cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415–419.

    Article  PubMed  CAS  Google Scholar 

  34. Li M, Xu F, Muller J et al. Ecotropic C-type retrovirus of B16 melanoma and malignant transformation of normal melanocytes. Int J Cancer 1998;76:430–436.

    Article  PubMed  CAS  Google Scholar 

  35. Li M, Huang X, Zhu Z et al. Sequence and insertion sites of murine melanoma-associated retrovirus. J Virol 1999;73:9178–9186.

    PubMed  CAS  Google Scholar 

  36. Muster T, Waltenberger A, Grassauer A et al. An endogenous retrovirus derived from human melanoma cells. Cancer Res 2003;63:8735–8741.

    PubMed  CAS  Google Scholar 

  37. Lower R, Lower J, Kurth R. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 1996;93:5177–5184.

    Article  PubMed  CAS  Google Scholar 

  38. Mayer J, Sauter M, Racz A et al. An almost-intact human endogenous retrovirus K on human chromosome 7. Nat Genet 1999;21:257–258.

    Article  PubMed  CAS  Google Scholar 

  39. Yang J, Bogerd HP, Peng S et al. An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc Natl Acad Sci USA 1999;96:13404–13408.

    Article  PubMed  CAS  Google Scholar 

  40. Lower R, Boiler K, Hasenmaier B et al. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci USA 1993;90:4480–4484.

    Article  PubMed  CAS  Google Scholar 

  41. Tonjes RR, Czauderna F, Kurth R. Genome-wide screening, cloning, chromosomal assignment and expression of full-length human endogenous retrovirus type K. J Virol 1999;73:9187–9195.

    PubMed  CAS  Google Scholar 

  42. Schiavetti F, Thonnard J, Colau D et al. A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T-lymphocytes. Cancer Res 2002;62:5510–5516.

    PubMed  CAS  Google Scholar 

  43. Buscher K, Trefzer U, Hofmann M et al. Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res 2005;65:4172–4180.

    Article  PubMed  Google Scholar 

  44. Harwood CA, Proby CM. Human papillomaviruses and nonmelanoma skin cancer. Curr Opin Infect Dis 2002;15:101–114.

    PubMed  Google Scholar 

  45. Buscher K, Hahn S, Hofmann M et al. Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res 2006;16:223–234.

    Article  PubMed  Google Scholar 

  46. Denner J, Norley S, Kurth R. The immunosuppressive peptide of HIV-1: functional domains and immune response in AIDS patients. AIDS 1994;8:1063–1072.

    Article  PubMed  CAS  Google Scholar 

  47. Mangeney M, Pothlichet J, Renard M et al. Endogenous retrovirus expression is required for murine melanoma tumor growth in vivo. Cancer Res 2005;65:2588–2591.

    Article  PubMed  CAS  Google Scholar 

  48. Mangeney M, de Parseval N, Thomas G et al. The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol 2001;82:2515–2518.

    PubMed  CAS  Google Scholar 

  49. Humer J, Waltenberger A, Grassauer A et al. Identification of a melanoma marker derived from melanoma-associated endogenous retroviruses. Cancer Res 2006;66:1658–1663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hengge, U.R. (2008). Role of Viruses in the Development of Squamous Cell Cancer and Melanoma. In: Reichrath, J. (eds) Sunlight, Vitamin D and Skin Cancer. Advances in Experimental Medicine and Biology, vol 624. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77574-6_14

Download citation

Publish with us

Policies and ethics