Skip to main content

Relationship Between Three-Dimensional Microstructure and Elastic Properties of Cortical Bone in the Human Mandible and Femur

  • Chapter
Book cover Primate Craniofacial Function and Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen KL, Mortensen HT, Pedersen EH, Melsen B. (1991a) Determination of stress levels and profiles in the periodontal ligament by means of an improved three-dimensional finite element model for various types of orthodontic and natural force systems. J Biomed Eng 13:293–303.

    Article  CAS  Google Scholar 

  • Andersen KL, Pedersen EH, Melsen B. (1991b) Material parameters and stress profiles within the periodontal ligament. Am J Orthod Dentofacial Orthop 99:427–40.

    Article  CAS  Google Scholar 

  • Ascenzi A. (1988) The micromechanics versus the macromechanics of cortical bone–a comprehensive presentation. Journal of Biomechanical Engineering 110:357–63.

    PubMed  CAS  Google Scholar 

  • Ashman RB. (1989) Experimental techniques. In: Cowin SC, (editors), Bone Mechanics, Boca Raton, Florida: CRC Press, Inc. pp. 75–96.

    Google Scholar 

  • Ashman RB, Cowin SC, Van Buskirk WC, et al. (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17:349–61.

    Article  PubMed  CAS  Google Scholar 

  • Asundi A, Kishen, A. (2000) A strain gauge and photoelastic analysis of in vivo strain and in vitro stress distribution in human dental supporting structures. Arch Oral Biol 45:543–50.

    Article  PubMed  CAS  Google Scholar 

  • Bacon GE, Goodship AE. (1991) The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age. J Anat 179:15–22.

    PubMed  CAS  Google Scholar 

  • Bouvier M, Hylander WL. (1981) The relationship between split-line orientation and in vivo bone strain in galago (G.crassicaudatus) and macaque (Macaca mulatta and M. fascicularis) mandibles. Am J Phys Anthropol 56:147–56.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Hylander WL. (1996) The mechanical or metabolic function of secondary osteonal bone in the monkey Macaca fascicularis. Arch Oral Biol 41:941–50.

    Article  PubMed  CAS  Google Scholar 

  • Buckland-Wright JC. (1977) The nature of split-line formation in bone. Proceedings of the Anatomical Society of Great Britain and Ireland.

    Google Scholar 

  • Carando S, Portigliatti-Barbos M, Ascenzi A, et al. (1991) Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing inferences about mechanical properties. Bone 12:265–9.

    Article  PubMed  CAS  Google Scholar 

  • Carter DR. (1978) Anisotropic analysis of strain rosette information from cortical bone. J Biomech 11:199–202.

    Article  PubMed  CAS  Google Scholar 

  • Cooper DMI, Turinsky AL, Sensen CW, Hallgrimsson B. (2003) Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec 274B: 169–179.

    Article  Google Scholar 

  • Cowin SC. (1989) The mechanical properties of cortical bone tissue. In: Cowin SC, (editor), Bone Mechanics, CRC Press, Inc. Boca Raton, Florida, pp. 97–128.

    Google Scholar 

  • Cowin SC, Hart RT. (1990) Errors in the orientation of the principal stress axes if bone tissue is modeled as isotropic. J Biomech 23:349–52.

    Article  PubMed  CAS  Google Scholar 

  • Cowin SC, Sadegh AM, Luo GM. (1991) Correction formulae for the misalignment of axes in the measurement of the orthotropic elastic constants. J Biomech 24:637–41.

    Article  PubMed  CAS  Google Scholar 

  • Currey JD. (1984) The mechanical adaptations of bones. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Currey JD, Brear K, Zioupos P. (1994) Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite. J Biomech 27:885.

    Article  PubMed  CAS  Google Scholar 

  • Currey JD, Zioupos P. (2001) The effect of porous microstructure on the anisotropy of bone-like tissue: a counterexample. J Biomech 34:707–10.

    Article  PubMed  CAS  Google Scholar 

  • Dechow PC, Nail GA, Schwartz-Dabney CL, Ashman RB. (1993) Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol 90:291–306.

    Article  PubMed  CAS  Google Scholar 

  • Dechow PC, Schwartz-Dabney CL, Ashman RB. (1992) Elastic properties of the human mandibular corpus. In: Carlson DS, Goldstein SA, (editors), Bone Biodynamics in Orthodontic and Orthopedic Treatment, Craniofacial Growth Series, Volume 27, Center for Human Growth and Development, The University of Michigan: Ann Arbor, Michigan, pp. 299–314.

    Google Scholar 

  • Dechow PC, Hylander WL. (2000) Elastic properties and masticatory bone stress in the macaque mandible. Am J Phys Anthropol 112:553–74.

    Article  PubMed  CAS  Google Scholar 

  • Dempster WT. (1967) Correlation of types of cortical grain structure with architectural features of the human skull. Amer J Anat 120:7–32.

    Article  Google Scholar 

  • Endo B. (1973) Stress analysis on the facial skeleton of gorilla by means of the wire strain gauge method. Primates 14:37–45.

    Article  Google Scholar 

  • Evans FG. (1973) Mechanical Properties of Bone. Charles C. Thomas, Springfield, IL.

    Google Scholar 

  • Fisher NI. (1993) Statistical Analysis of Circular Data. Cambridge University Press, Cambridge. 277pp.

    Google Scholar 

  • Fratzl P, Fratzl-Zelman N, Klaushofer K. (1993) Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. Biophys J 64:260–6.

    PubMed  CAS  Google Scholar 

  • Fratzl P, Groschner M, Vogl G, et al. (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Min Res 7:329–34.

    CAS  Google Scholar 

  • Gebhardt W. (1906) Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens. II. Spezieller Teil.: Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entw Mech Org 20:187–322.

    Google Scholar 

  • Giesen EB, van Eijden TM. (2000) The three-dimensional cancellous bone architecture of the human mandibular condyle. J Dent Res 79:957–63.

    Article  PubMed  Google Scholar 

  • Guo E. (2001) Mechanical properties of cortical bone and cancellous bone tissue. In Cowin SC (editor) Bone Mechanics Handbook, Second Edition, CRC Press, Boca Raton, pages 10–1 to 10–23.

    Google Scholar 

  • Harper RP, de Bruin H, Burcea I. (1997) Muscle activity during mandibular movements in normal and mandibular retrognathic subjects. J Oral Maxillofac Surg 55:225–33.

    Article  PubMed  CAS  Google Scholar 

  • Hart RT, Hennebel VV, Thongpreda N, et al. (1992) Modeling the biomechanics of the mandible – a three- dimensional finite element study. J Biomechanics 25:261–86.

    Article  CAS  Google Scholar 

  • Hasegawa K, Turner CH, Burr DB. (1994) Contribution of collagen and mineral to the elastic anisotropy of bone. Calcif Tissue Int 55:381–6.

    Article  PubMed  CAS  Google Scholar 

  • Hert J, Fiala P, Petrtyl M. (1994) Osteon orientation of the diaphysis of the long bones in man. Bone 15:269–77.

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL. (1979a) An experimental analysis of temporomandibular joint reaction force in Macaques. Am J Phys Anthropol 51:433–56.

    Article  CAS  Google Scholar 

  • Hylander WL. (1979b) Mandibular function in Galago crassicaudatus and Macaca fascicularis: an in vivo approach to stress analysis of the mandible. J Morphol 159:253–96.

    Article  CAS  Google Scholar 

  • Hylander WL. (1984) Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am J Phys Anthropol 64:1–46.

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL, Johnson KR. (1994) Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. Am J Phys Anthropol 94:523–47}.

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL, Johnson KR, Crompton AW. (1987) Loading patterns and jaw movements during mastication in Macaca fascicularis: a bone-strain, electromyographic, and cineradiographic analysis. Am J Phys Anthropol 72:287–314.

    Article  PubMed  CAS  Google Scholar 

  • Kabel J, van Rietbergen B, Odgaard A, Huiskes R. (1999) Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25:481–6.

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Meunier A. (1987) The elastic anisotropy of bone. J Biomech 20:1063–70.

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Yoon HS. (1984) The structure and anisotropic mechanical properties of bone. IEEE Trans Biomed Eng 31:878–84.

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Kinney JH, Spencer P, Wang Y, Fricke B, Walker MP, Friis EA. (2005) Elastic anisotropy of bone and dentitional tissues. J Mater Sci Mater Med. 16:803–6.

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Yoon HS, Lipson S, Maharidge R, Meunier A, Christel P. (1984) The effects of remodeling on the elastic properties of bone. Calcif Tissue Int 36:Suppl 1:S31–6.

    Article  PubMed  Google Scholar 

  • Koch JC. (1917) The laws of bone architecture. Am J Anat 21:177–297.

    Article  Google Scholar 

  • Kohles SS, Bowers JR, Vailas AC, Vanderby R Jr. (1997) Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens. J Biomech Eng 119:232–6.

    Article  PubMed  CAS  Google Scholar 

  • Korioth TWP, Hannam AG. (1994a) Deformation of the human mandible during simulated tooth clenching. J Dent Res 73:56–66.

    CAS  Google Scholar 

  • Korioth TWP, Hannam AG. (1994b) Mandibular forces during simulated tooth clenching. J Orofac Pain 8:178–89.

    CAS  Google Scholar 

  • Lanyon LE, Rubin CT. (1985) Functional adaptation in skeletal structures. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, (editors), Functional Vertebrate Morphology, The Belknap Press of Harvard University Press: London, England, pp. 1–25.

    Google Scholar 

  • Lees S. (1982) Ultrasonic measurements of deer antler, bovine tibia and tympanic bulla. J Biomech 15:867–74.

    Article  PubMed  CAS  Google Scholar 

  • Lees S, Eyre DR, Barnard SM. (1990) BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: corresponding variation of sonic velocity and equatorial diffraction spacing. Connect Tissue Res 24:95–105.

    Article  PubMed  CAS  Google Scholar 

  • Lipson SF, Katz JL. (1984) The relationship between elastic properties and microstructure of bovine cortical bone. J Biomech 17:231–40.

    Article  PubMed  CAS  Google Scholar 

  • Mardia KV, Jupp PE. (2000) Statistics of Directional Data. 2nd Edition. John Wiley & Sons, Chicester. 429pp.

    Google Scholar 

  • Marks L, Teng S, Artun J, Herring S. (1997) Reaction strains on the condylar neck during mastication and maximum muscle stimulation in different condylar positions: an experimental study in the miniature pig. J Dent Res 76:1412–20.

    PubMed  CAS  Google Scholar 

  • Martin RB, Burr DB. (1989) Structure, function, and adaptation of compact bone. Raven Press, New York.

    Google Scholar 

  • Martin RB, Burr DB, Sharkey NA. (1998) Skeletal Tissue Mechanics. Springer, New York.

    Google Scholar 

  • Peterson J, Dechow PC. (2002) Material properties of the inner and outer cortical tables of the human parietal bone. Anat Rec 268:7–15.

    Article  PubMed  Google Scholar 

  • Peterson J, Dechow PC. (2003) Material properties of the cranial vault and zygoma. Anat Rec 274A:785–797.

    Article  Google Scholar 

  • Peterson J, Wang Q, Dechow PC. (2006) Material properties of the dentate maxilla. Anat Rec, 288A:962–972.

    Article  Google Scholar 

  • Petrtyl M, Hert J, Fiala P. (1996) Spatial organization of the haversian bone in man. J Biomech 29:161–9.

    Article  PubMed  CAS  Google Scholar 

  • Reilly DT, Burstein AH. (1974) The mechanical properties of cortical bone. J Bone Joint Surg (AM) 56-A:1001–22.

    Google Scholar 

  • Ricos V, Pedersen DR, Brown TD, Ashman RB, Rubin CT, Brand RA. (1996) Effects of anisotropy and material axis registration on computed stress and strain distributions in the turkey ulna. J Biomech 29:261–7.

    Article  PubMed  CAS  Google Scholar 

  • Riggs CM, Vaughan LC, Evans GP, et al. (1993) Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat Embryol 187:239–48.

    PubMed  CAS  Google Scholar 

  • Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P. (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64: 422–9.

    Article  PubMed  CAS  Google Scholar 

  • Robling AG, Stout SD. (1999) Morphology of the drifting osteon. Cells Tiss Org 164:192–204.

    Article  CAS  Google Scholar 

  • Sevostianov I, Kachanov M. (2000) Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. J Biomech 33:881–8.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki N, Ikawa T, Fukuda A. (1991) Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech 24:57–62.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki N, Matsushima N, Ikawa T, et al. (1989) Orientation of bone mineral and its role in the anisotropic mechanical properties of bone- transverse anisotropy. J Biomech 22:157–64.

    Article  PubMed  CAS  Google Scholar 

  • Schaffler MB, Burr DB. (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–6.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz-Dabney CL, Dechow PC. (2002) Edentulation alters material properties of mandibular cortical bone. J Dent Res 81:613–617.

    Google Scholar 

  • Schwartz-Dabney CL, Dechow PC. (2003) Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol 120:252–77.

    Article  Google Scholar 

  • Skedros JG, Mason MW, Bloebaum RD. (1994) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec 239:405–13.

    Article  PubMed  CAS  Google Scholar 

  • Stout SD, Brunsden BS, Hildebolt CF, Commean PK, Smith KE, Tappen NC. (1999) Computer-assisted 3D reconstruction of serial sections of cortical bone to determine the 3D structure of osteons. Calcif Tissue Int 65:280–4.

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Turner CH, Burr DB. (1996) Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. J Bone Miner Res 11:1292–301.

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Turner CH, Owan I, Martin RB, Lau ST, Forwood MR, Burr DB. (1999) Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. J Orthop Res 17:59–66.

    Article  PubMed  CAS  Google Scholar 

  • Tappen NC. (1970) Main patterns and individual differences in baboon skull split-lines and theories of causes of split-line orientation in bone. Am J Phys Anthropol 33:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Tappen NC. (1977) Three-dimensional studies on resorption spaces and developing osteons. Am J Anat. 149:301–17.

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Herring SW (1995) A stereological study of trabecular architecture in the mandibular condyle of the pig. Arch Oral Biol 40:299–310.

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Herring SW. (1996) Anatomic and directional variation in the mechanical properties of the mandibular condyle in pigs. J Dent Res 75:1842–50.

    PubMed  CAS  Google Scholar 

  • Throckmorton GS, Dechow PC. (1994) In vitro strain measurements in the condylar process of the human mandible. Archs Oral Biol 39:853–67.

    Article  CAS  Google Scholar 

  • Throckmorton GS, Ellis E, III, Winkler AJ, Dechow PC. (1992) Bone strain following application of a rigid bone plate: an in-vitro study in human mandibles. J Oral Maxillofac Surg 50:1066–73.

    Article  PubMed  CAS  Google Scholar 

  • Throckmorton GS, Groshan GJ, Boyd SB. (1990) Muscle activity patterns and control of temporomandibular joint loads. J Prosthet Dent 63:685–95.

    Article  PubMed  CAS  Google Scholar 

  • Turner CH, Chandran A, Pidaparti RM. (1995) The anisotropy of osteonal bone and its ultrastructural implications. Bone 17:85–9.

    Article  PubMed  CAS  Google Scholar 

  • Turner CH, Woltman TA, Belongia DA. (1992) Structural changes in rat bone subjected to long-term, in vivo mechanical loading. Bone 13:417–22.

    Article  PubMed  CAS  Google Scholar 

  • van Eijden TM. (2000) Biomechanics of the mandible. Crit Rev Oral Biol Med 11:123–36.

    Google Scholar 

  • van Eijden TM, Brugman P, Weijs WA, Oosting J. (1990) Coactivation of jaw muscles: recruitment order and level as a function of bite force direction and magnitude. J Biomech 23:475–85.

    Article  Google Scholar 

  • Vollmer D, Meyer U, Joos U, Vegh A, Piffko J. (2000) Experimental and finite element study of a human mandible. J Craniomaxillofac Surg 28:91–6.

    PubMed  CAS  Google Scholar 

  • Wenk HR, Heidelbach F. (1999) Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone 24:361–9.

    Article  PubMed  CAS  Google Scholar 

  • Woo SL-Y, Kuel SC, Amiel DG, Hayes WC, White FC, Akeson WH. (1981) The effect of prolonged physical training on the properties of lone bone: a study of Wolff’s law. J Bone Joint Surg (AM) 63-A:780–7.

    Google Scholar 

  • Yamashita J, Dechow PC. (2000) Strain patterns of the human mandible during artificial loading. J Dent Res 79, Special Issue: Abstract 2833.

    Google Scholar 

  • Yeni YN, Vashishth D, Fyhrie DP. (2001) Estimation of bone matrix apparent stiffness variation caused by osteocyte lacunar size and density. J Biomech Eng 123:10–7.

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Katz JL (1976) Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry. J Biomech 9:407–12.

    Article  PubMed  CAS  Google Scholar 

  • Zioupos P, Currey D. 1998. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Zioupos P, Currey JD, Mirza MS, Barton DC. (1995) Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses. Philos Trans R Soc Lond B Biol Sci 347:383–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dechow, P.C., Chung, D.H., Bolouri, M. (2008). Relationship Between Three-Dimensional Microstructure and Elastic Properties of Cortical Bone in the Human Mandible and Femur. In: Vinyard, C., Ravosa, M.J., Wall, C. (eds) Primate Craniofacial Function and Biology. Developments In Primatology: Progress and Prospects. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76585-3_13

Download citation

Publish with us

Policies and ethics