Skip to main content

Influence of Phenolics on Wine Organoleptic Properties

  • Chapter
Wine Chemistry and Biochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcalde-Eon, C., Escribano-Bailon, M.T., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2006). Changes in the detailed pigment composition of red wine during maturity and ageing – A comprehensive study. Anal. Chim. Acta, 563, 238–254.

    Article  CAS  Google Scholar 

  • Alcalde-Eon, C., Escribano-Bailón, M. T., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2007). Identification of dimeric anthocyanins and new oligomeric pigments in red wine by means of HPLC-DAD-ESI/MSn.J. Mass Spectr., 42, 735–748.

    Article  CAS  Google Scholar 

  • Amrani Joutei, K., Glories Y., & Mercier M. (1994). Localisation des tanins dans la pellicule de baie de raisin. Vitis, 33, 133–138.

    Google Scholar 

  • Artz, W. E., Bishop, P. D., Dunker, A. K., Schanus, E. G., & Swanson, B. G. (1987). Interaction of synthetic proanthocyanidin dimer and trimer with bovine serum-albumin and purified bean globulin fraction G-1. J. Agric. Food Chem., 35, 417–421.

    Article  CAS  Google Scholar 

  • Asen, S., Stewart, R. N., & Norris, K. H. (1972). Co-pigmentation of anthocyanins in plant tissues and its effects on color. Phytochemistry, 11, 1139–1144.

    Article  CAS  Google Scholar 

  • Asenstorfer, R. E., Markides, A. J., Iland, P. G., & Jones, G. P. (2003). Formation of vitisin A during red wine vinification and maturation. Aust. J. Grape Wine Res., 9, 40–46.

    Article  CAS  Google Scholar 

  • Bacon, J. R., & Rhodes, M. J. C. (1998). Development of a competition assay for the evaluation of the binding of human parotid salivary proteins to dietary complex phenols and tannins using a peroxidase-labeled tannin. J. Agric. Food Chem., 46, 5083–5088.

    Article  CAS  Google Scholar 

  • Bakker, J., & Timberlake, C. F. (1997). Isolation, identification and characterization of new color-stable anthocyanins occuring in some red wines. J. Agric. Food Chem., 46, 35–43.

    Article  Google Scholar 

  • Bakker, J., Bridle, P., Honda, T., Kuwano, H., Saito, N., Terahara, N., & Timberlake, C. F. (1997). Identification of an anthocyanin occuring in some red wines. Phytochemistry, 44, 1375–1382.

    Article  CAS  Google Scholar 

  • Baranac, J. M., Petranovic, N. A., & Dimitric-Markovic, J. M. (1996). Spectrophotometric study of anthocyan copigmentation reactions. J. Agric. Food Chem., 44, 1333–1336.

    Article  CAS  Google Scholar 

  • Baranac, J. M., Petranovic, N. A., & Dimitric-Markovic, J. M. (1997a). Spectrophotometric study of anthocyan copigmentation reactions.2. Malvin and the nonglycosidized flavone quercetin. J. Agric. Food Chem., 45, 1694–1697.

    Article  CAS  Google Scholar 

  • Baranac, J. M., Petranovic, N. A., & Dimitric-Markovic, J. M. (1997b). Spectrophotometric study of anthocyan copigmentation reactions.3. Malvin and the nonglycosidized flavone morin. J. Agric. Food Chem., 45, 1698–1700.

    Article  CAS  Google Scholar 

  • Bate-Smith, E. C., & Swain, T. (1962). Flavonoid Compounds. In H. S. Mason & A. M. Florkin (Ed.) Comparative Biochemistry (pp. 755–809). New York: Academic Press.

    Google Scholar 

  • Baxter, N. J., Lilley, T. H., Haslam, E., & Williamson, M. P. (1997). Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry, 36, 5566–5577.

    Article  CAS  Google Scholar 

  • Beart, J. E., Lilley, T. H., & Haslam, E. (1985). Plant Polyphenols - Secondary Metabolism and Chemical Defense – Some Observations. Phytochemistry, 24, 33–38.

    Article  CAS  Google Scholar 

  • Berke, B., & de Freitas, V. A. P. (2005). Influence of procyanidin structures on their ability to complex with oenin. Food Chem., 90, 453–460.

    Article  CAS  Google Scholar 

  • Berke, B., & de Freitas, V. A. P. (2007). A colorimetric study of oenin copigmented by procyanidins. J. Sci. Food Agric., 87, 260–265.

    Article  CAS  Google Scholar 

  • Bishop, P. D., & Nagel, C. W. (1984). Characterization of the condensation product of malvidin 3,5-diglucoside and catechin. J. Agric. Food Chem., 32, 1022–1026.

    Article  CAS  Google Scholar 

  • Bloomfield, D. G., Heatherbell, D. A., & Nikfardjam, M. S. P. (2003). Effect of p-coumaric acid on the color in red wine. Mitt. Klosterneuburg, 53, 195–198.

    CAS  Google Scholar 

  • Boido, E., Alcalde-Eon, C., Carrau, F., Dellacassa, E., & Rivas-Gonzalo, J. C. (2006). Aging effect on the pigment composition and color of Vitis vinifera L. cv Tannat wines. Contribution of the main pigment families to wine color. J. Agric. Food Chem., 54, 6692–6704.

    Article  CAS  Google Scholar 

  • Boulton, R. (1996). A method for the assessment of copigmentation in red wines. Presented at the Forty-seventh Annual Meeting of the American Society of Enology and Viticulture, Reno NV, June 1996.

    Google Scholar 

  • Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic., 52, 67–84.

    CAS  Google Scholar 

  • Bourzeix, M., Heredia, N., Estrella, M. I., Puech, J. L., & Fartsov, K. (1980). Estimation quantitative de la matière colorante rouge des moûts concentrés et des vins. Bull. Liaison-Groupe Polyphenols, 9, 131–142.

    Google Scholar 

  • Brouillard, R. (1982). Chemical structure of anthocyanins. In P. Markakis (Ed.), Anthocyanins as Food Colors (pp. 1–38). New York: Academic Press.

    Google Scholar 

  • Brouillard, R., & Dangles, O. (1993). Flavonoids and flower colour. In J. B. Harborne (Ed.) it The Flavonoids. Advances in research since 1986 (pp. 565–588). London: Chapman & Hall.

    Google Scholar 

  • Brouillard, R., & Dangles, O. (1994). Anthocyanin molecular-interactions - the first step in the formation of new pigments during wine aging. Food Chem., 51, 365–371.

    Article  CAS  Google Scholar 

  • Brouillard, R., Delaporte, B., & Dubois, J. E. (1977). Chemistry of anthocyanins pigments 2. Kinetic and thermodinamic study of proton transfer, hydration, and tautomeric reactions of malvidin-3-glucoside. J. Am. Chem. Soc., 99, 8461–8468.

    Article  CAS  Google Scholar 

  • Brouillard, R., Wigand, M. C., Dangles, O., & Cheminat, A. (1991). pH and solvent effects on the copigmentation reaction of malvin with polyphenols, purine and pyrimidine-derivatives. J. Chem. Soc. Perkin Trans., 2, 1235–1241.

    Google Scholar 

  • Brouillard, R., Chassaing, S., & Fougerousse, A. (2003). Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? Phytochemistry, 64, 1179–1186.

    Article  CAS  Google Scholar 

  • Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol., 47, 311–340.

    Article  CAS  Google Scholar 

  • Calderon, P., Vanburen, J., & Robinson, W. B. (1968). Factors influencing formation of precipitates and hazes by gelatin and condensed and hydrolysable tannins. J. Agric. Food Chem., 16, 479–482.

    Article  CAS  Google Scholar 

  • Canals, R., Llaudy, M. C., Canals, J. M., & Zamora, F. (2008). Influence of the elimination and addition of seeds on the colour, phenolic composition and astringency of red wine. Eur. Food Res. Tech., 226, 1183–1190.

    Article  CAS  Google Scholar 

  • Carvalho, E., Povoas, M., Mateus, N., & de Freitas, V. A. P. (2006a). Application of flow nephelometry to the analysis of carbohydrate influence on protein-tannin interactions. J. Sci. Food Agric., 86, 891–896.

    Article  CAS  Google Scholar 

  • Carvalho, E., Mateus, N., Plet, B., Pianet, I., Dufourc, E., & dde Freitas, V. A. P. (2006b). Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. J. Agric. Food Chem., 54, 8936–8944

    Article  CAS  Google Scholar 

  • Chapon, L., (1993). Nephelometry as a Method for Studying the Relations between Polyphenols and Proteins. J. Inst. Brew., 99, 49–56.

    CAS  Google Scholar 

  • Charlton, A. J., Baxter, N. J., Lilley, T. H., Haslam, E., McDonald, C. J., & Williamson, M. P. (1996). Tannin interactions with a full-length human salivary proline-rich protein display a stronger affinity than with single proline-rich repeats. FEBS Letters, 382, 289–292.

    Article  CAS  Google Scholar 

  • Charlton, A. J., Haslam, E., & Williamson, M. P. (2002a). Multiple conformations of the proline-rich protein/epigallocatechin gallate complex determined by time-averaged nuclear Overhauser effects. J. Am. Chem. Soc., 124, 9899–9905.

    Article  CAS  Google Scholar 

  • Charlton, A. J., Baxter, N. J., Khan, M. L., Moir, A. J. G., Haslam, E., Davies, A. P., & Williamson, M. P. (2002b). Polyphenol/peptide binding and precipitation. J. Agric. Food Chem., 50, 1593–1601.

    Article  CAS  Google Scholar 

  • Cheynier, V., Moutounet, M., & Sarni-Manchado, P. (2003). Los compuestos fenólicos. In C. Flanzy (Ed.), Enologia: fundamentos cientificos y tecnologicos (pp. 114–136). Madrid: Ediciones Mundi-Prensa.

    Google Scholar 

  • Cheynier, V., Dueñas, M., Salas, E., Maury, C., Souquet, J. M., Sarni-Manchado, P., & Fulcrand, H. (2006). Structure and properties of wine pigments and tannins. Am. J. Enol. Vitic., 57, 298–305.

    CAS  Google Scholar 

  • Clifford, M. N. (1997). Astringrency. In F. A. Tomás-Barberán & R. J. Robins (Ed.), Phytochemistry of Fruits and Vegetables: proceedings of the phytochemical society of Europe (pp.87–107). Oxford: Clarendon Press.

    Google Scholar 

  • Clifford, M. N. (2000). Anthocyanins – nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1063–1072.

    Article  CAS  Google Scholar 

  • Clifford, M. N., & Scalbert, A. (2000). Ellagitannins – nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1118–1125.

    Article  CAS  Google Scholar 

  • Condelli, N., Dinnella, C., Cerone, A., Monteleone, E., & Bertuccioli, M. (2006). Prediction of perceived astringency induced by phenolic compounds II: criteria for panel selection and preliminary application on wine samples. Food Qual. Pref., 17, 96–107.

    Article  Google Scholar 

  • Czochanska, Z., Foo L. Y., & Porter L. J. (1979). Compositional changes in lower molecular weight flavans during grape maturation. Phytochemistry, 18, 1819–1822.

    Article  CAS  Google Scholar 

  • Dangles, O., & Brouillard, R. (1992). Polyphenol Interactions – the copigmentation case - thermodynamic data from temperature-variation and relaxation kinetics – medium effect. Can. J. Chem., 70, 2174–2189.

    Article  CAS  Google Scholar 

  • Dangles, O., Saito, N., & Brouillard, R. (1993). Kinetic and thermodynamic control of flavilium hydration in the pelargonidin–cinnamic acid complexation. Origin of the extraordinary flower colour diversity of Pharbitis nil. J. Am. Chem. Soc., 115, 3125–3132.

    Google Scholar 

  • Dangles, O., Elhabiri, M., & Brouillard, R. (1994). Kinetic and thermodynamic investigation of the aluminum anthocyanin complexation in aqueous-solution. J. Chem. Soc. Perkin Trans., 2, 2587–2596.

    Google Scholar 

  • Darias-Martín, J., Carrillo, M., Díaz, E., & Boulton R. B. (2001). Enhancement of red wine colour by pre-fermentation addition of copigments. Food Chem., 73, 217–220.

    Article  Google Scholar 

  • Darias-Martín, J., Martin-Luis, B., Carrillo-Lopez, M., Lamuela-Raventos, R., Díaz-Romero, C., & Boulton R. B. (2002). Effect of caffeic acid on the color of red wine. J. Agric. Food Chem., 50, 2062–2067.

    Article  CAS  Google Scholar 

  • Darias-Martin, J., Carrillo-Lopez, M., Echavarri, J. F., & Diaz-Romero, C. (2007). The magnitude of copigmentation in the colour of aged red wines made in the Canary Islands. Eur. Food Res. Tech., 224, 643–648.

    Article  CAS  Google Scholar 

  • Davies, A. J., & Mazza, G. (1993). Copigmentation of simple and acylated anthocyanins with colorless phenolic-compounds. J. Agric. Food Chem., 41, 716–720.

    Article  CAS  Google Scholar 

  • de Freitas, V. A. P., & Mateus, N. (2001). Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem., 49, 940–945.

    Article  CAS  Google Scholar 

  • de Freitas, V. A. P., & Mateus, N. (2002). Nephelometric study of salivary protein-tannin aggregates. J. Sci. Food Agric., 82, 113–119.

    Article  CAS  Google Scholar 

  • de Freitas, V. A. P., Glories, Y., Bourgeois, G., & Vitry, C. (1998). Characterisation of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry, 49, 1435–1441.

    Article  Google Scholar 

  • de Freitas, V. A. P., Glories Y., & Augustin, M. (2001). Developmental changes of procyanidins in grapes of red Vitis vinifera varieties and their composition in respective wines. Am. J. Enol. Vitic., 51, 397–403.

    Google Scholar 

  • de Freitas, V. A. P., Carvalho, E., & Mateus, N. (2003). Study of the Influence of carbohydrates on the Protein-Tannin aggregation by nephelometry. Food Chem., 81, 503–509.

    Article  CAS  Google Scholar 

  • de Freitas, V., Sousa, C., Silva, A., Santos-Buelga, C., & Mateus, N. (2004). Synthesis of a new catechin-pyrylium derived pigment. Tetrahedron Lett., 45, 9349–9352.

    Article  CAS  Google Scholar 

  • de Wijk, R. A., & Prinz, J. F. (2005). The role of friction in perceived oral texture. Food Qual. Pref., 16, 121–129.

    Article  Google Scholar 

  • di Stefano, R., Gentilini, N., & Panero, L. (2005). Experimental observations about copigmentation phenomenon. Riv. Vit. Enol., 58, 35–50.

    Google Scholar 

  • Doco, T., Williams, P., Moutounet, M., & Pellerin, P. (2000). Les polysaccharides du vin. Bull. O.I.V., 73, 785–792.

    CAS  Google Scholar 

  • Dodds, M. W. J., Johnson, D. A., & Yeh, C. K. (2005). Health benefits of saliva: a review. J. Den., 33, 223–233.

    Google Scholar 

  • Dueñas, M., Fulcrand, H., & Cheynier, V. (2006). Formation of anthocyanin-flavanol adducts in model solutions. Anal. Chim. Acta, 563, 15–25.

    Article  CAS  Google Scholar 

  • Edelmann, A., & Lendl, B. (2002). Toward the optical tongue: Flow-through sensing of tannin- protein interactions based on FTIR spectroscopy. J. Am. Chem. Soc., 124, 14741–14747.

    Article  CAS  Google Scholar 

  • Eiro, M. J., & Heinonen, M. (2002). Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. J. Agric. Food Chem., 50, 7461–7466.

    Article  CAS  Google Scholar 

  • Escalona, H., Birkmyre, L., Piggott, J. R., & Paterson, A. (2002). Effect of maturation in small oak casks on the volatility of red wine aroma compounds. Anal. Chim. Acta, 458, 45–54.

    Article  CAS  Google Scholar 

  • Escot, S., Feuillat, M., Dulau, L., & Charpentier, C. (2001). Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astringency. Aust. J. Grape Wine Res., 7, 153–159.

    Article  Google Scholar 

  • Escribano-Bailon, T., Dangles, O., & Brouillard, R. (1996). Coupling reactions between flavylium ions and catechin. Phytochemistry, 41, 1583–1592.

    Article  CAS  Google Scholar 

  • Escribano-Bailon, M. T., Santos-Buelga, C., Francia-Aricha, E. M., Rivas-Gonzalo, J. C., & Heredia, F. J. (1999). Flavanol-anthocyanin and colour quality. In Proceedings of 1st International Congress Pigment in Food Technology (pp. 363–367). Sevilla, Spain.

    Google Scholar 

  • Escribano-Bailon, T., Alvarez-Garcia, M., Rivas-Gonzalo, J. C., Heredia, F. J., & Santos-Buelga, C. (2001). Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (+)-catechin. J. Agric. Food Chem., 49, 1213–1217.

    Article  CAS  Google Scholar 

  • Es-Safi, N., Fulcrand, H., Cheynier, V., & Moutounet, M. (1999). Studies on the acetaldehyde-induced condensation of (-)-epicatechin and malvidin 3-O-glucoside in a model solution system.J. Agric. Food Chem., 47, 2096–2102.

    Article  CAS  Google Scholar 

  • Es-Safi, N.-E., Cheynier, V., & Moutounet, M. (2002). Interactions between cyanidin 3-O-glucoside and furfural derivatives and their impact on food color changes. J. Agric. Food Chem., 50, 5586–5595.

    Article  CAS  Google Scholar 

  • Fernandez de Simon, B., Hernandez, T., Cadahia, E., Dueñas, M., & Estrella, I. (2003). Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. Eur. Food Res. Tech., 216, 150–156.

    CAS  Google Scholar 

  • Fischer, U., & Noble A. C. (1994). The effect of ethanol, catechin concentration, and pH on sournss and bittherness of wine. Am. J. Enol. Vitic., 45, 6–10.

    CAS  Google Scholar 

  • Francia-Aricha, E. M., Guerra, M. T., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (1997). New anthocyanin pigments formed after condensation with flavanols . J. Agric. Food Chem., 45, 2262–2266.

    Article  CAS  Google Scholar 

  • Frazier, R. A., Papadopoulou, A., Mueller-Harvey, I., Kissoon, D., & Green, R. J. (2003). Probing protein-tannin interactions by isothermal titration microcalorimetry. J. Agric. Food Chem., 51, 5189–5195.

    Article  CAS  Google Scholar 

  • Frazier, R. A., Papadopoulou, A., & Green, R. J. (2006). Isothermal titration calorimetry study of epicatechin binding to serum albumin. J. Pharm. Biomed. Anal., 41, 1602–1605.

    Article  CAS  Google Scholar 

  • Fry, S. C. (1995). Polysaccharide-modifying enzymes in the plant-cell wall. Ann. Rev. Plant Physiol. Plant Mol. Biol., 46, 497–520.

    Article  CAS  Google Scholar 

  • Fulcrand, H., Cameira Dos Santos, P. J., Sarni-Manchado, P., Cheynier, V., & FabreBonvin, J. (1996). Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perkin Trans., 1, 735–739.

    Article  Google Scholar 

  • Gawel, R. (1998). Red wine astringency: a review. Aust. J. Grape Wine Res., 4, 74–95.

    Article  CAS  Google Scholar 

  • Gawel, R., Oberholster A., & Francis, I. L. (2000). A “Mouth-feel Wheel”: terminology for communicating the mouth-feel characteristics of red wine. Aust. J. Grape Wine Res., 6, 203–207.

    Article  Google Scholar 

  • Gawel, R., Iland, P. G., & Francis, I. L. (2001). Characterizing the astringency of red wine: a case study. Food Qual. Pref., 12, 83–94.

    Article  Google Scholar 

  • Goldstein, J. L., & Swain, T. (1963). Changes in tannins in ripening fruits. Phytochemistr , 2, 371–383.

    Article  Google Scholar 

  • Gomez-Miguez, M., Gonzalez-Manzano, S., Escribano-Bailon, M. T., Heredia, F. J., & Santos-Buelga, C. (2006). Influence of different phenolic copigments on the color of malvidin 3-glucoside. J. Agric. Food Chem., 54, 5422–5429.

    Article  CAS  Google Scholar 

  • Gonnet, J. F. (1998). Colour effects of co-pigmentation of anthocyanins revisited – 1. A colorimetric definition using the CIELAB scale. Food Chem., 63, 409–415.

    Article  CAS  Google Scholar 

  • Gonzalez-Manzano, S. (2007). Anthocyanins and flavanols in grape and wine. Influence of the composition in the processes of copigmentation and colour stability. Ph.D. dissertation, University of Salamanca (Spain).

    Google Scholar 

  • Gonzalez-Manzano, S., Mateus, N., de Freitas, V. A. P., & Santos-Buelga, C. (2008a). Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments 228, 83–92.

    Google Scholar 

  • González-Manzano, S., Santos-Buelga, C., Dueñas, M., Rivas-Gonzalo, J. C., & Escribano-Bailón, M. T. (2007b). Colour implications of self-association processes of wine anthocyanins.Eur. Food Res. Tech. (in press). DOI 10.1007/s00217-007-0560-9.

    Google Scholar 

  • Goto, T., & Kondo, T. (1991). Structure and molecular stacking of anthocyanins – flower color variation. Angewadte Cemie International English Edition, 30, 17–33.

    Google Scholar 

  • Green, B. G. (1993). Oral Astringency – A tactile component of flavor. Acta Psych., 84, 119–125.

    Article  CAS  Google Scholar 

  • Guadalupe, Z., Palacios, A., & Ayestaran, B. (2007). Maceration enzymes and mannoproteins: a possible strategy to increase colloidal stability and color extraction in red wines.J. Agric. Food Chem., 55,4854–4862.

    Article  CAS  Google Scholar 

  • Hagerman, A. E., & Butler, L. G. (1980). Determination of protein in tannin-protein Precipitates. J. Agric. Food Chem., 28, 944–947.

    Article  CAS  Google Scholar 

  • Hagerman, A. E., & Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. J. Biol. Chem., 256, 4494–4497.

    CAS  Google Scholar 

  • Hagerman, A. E., Rice, M. E., & Ritchard, N. T. (1998). Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin(16) (4 -> 8) catechin (procyanidin). J. Agric. Food Chem., 46, 2590–2595.

    Article  CAS  Google Scholar 

  • Hakansson, E., Pardon, K., Hayasaka, Y., de Sa, M., & Herderich, M. (2003). Structures and colour properties of new red wine pigments. Tetrahedron Lett., 44, 4887–4891.

    Article  CAS  Google Scholar 

  • Haslam, E. (1980). In vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochemistry, 16, 1625–1670.

    Article  Google Scholar 

  • Haslam, E. (1998a). Taste, bitterness and astringency. In E. Haslam (Ed.), Pratical polyphenolics: from structure to molecular recognition and physiological action (pp. 178–225). Cambridge: University Press.

    Google Scholar 

  • Haslam, E. (1998b). Maturation – Changes in astringency. In E. Haslam (Ed.), Pratical polyphenolics: from structure to molecular recognition and physiological action (pp. 226–261). Cambridge: University Press.

    Google Scholar 

  • Hatano, T., & Hemingway, R. W. (1996). Association of (+)-catechin and catechin-(4 alpha->8)-catechin with oligopeptides. Chem. Comm., 22, 2537–2538.

    Google Scholar 

  • Hermosin, I. (2003). Influence of ethanol content on the extent of copigmentation in a Cencibel Young Red Wine.J. Agric. Food Chem., 51, 4079–4083.

    Article  CAS  Google Scholar 

  • Hermosin, I., Sanchez-Palomo, E., & Vicario-Espinosa, A. (2005). Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem., 92, 269–283.

    Article  CAS  Google Scholar 

  • Hollman, P. C. H., & Arst, I. C. W. (2000). Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1081–1092.

    Article  CAS  Google Scholar 

  • Horne, J., Hayes, J., & Lawless, H. T. (2002). Turbidity as a measure of salivary protein reactions with astringent substances. Chem. Sens., 27, 653–659.

    Article  CAS  Google Scholar 

  • Hoshino, T. (1991). An approximate estimate of self-association constants the self-stacking conformation of malvin quinoidal bases studied by 1H NMR. Phytochemistry, 30, 2049–2055.

    Article  CAS  Google Scholar 

  • Hoshino, T., Matsumoto, U., Harada, N., & Goto, T. (1981). Chiral excitation coupled stacking of anthocyanins: Interpretation of the origin of anomalous CD induced by anthocyanin association. Tetrahedron Lett., 22, 3621–3624.

    Article  CAS  Google Scholar 

  • Houbiers, C., Lima, J. C., Maçanita, A. L., & Santos, H. (1998). Color stabilization of malvidin 3-glucoside: Self-aggregation of the flavylium cation and copigmentation with the Z-chalcone form. J. Phy. Chem. B, 102, 3578–3585.

    Article  CAS  Google Scholar 

  • Huber, D. J. (1983). Polyuronide Degradation and Hemicellulose Modifications in Ripening Tomato Fruit. J. Am. Soc. Hort. Sci., 108, 405–409.

    CAS  Google Scholar 

  • Jobstl, E., O’Connell, J., Fairclough, J. P. A., & Williamson, M. P. (2004). Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules, 5, 942–949.

    Article  CAS  Google Scholar 

  • Jobstl, E., Howse, J. R., Fairclough, J. P. A., & Williamson, M. P. (2006). Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J. Agric. Food Chem., 54, 4077–4081.

    Article  CAS  Google Scholar 

  • Jurd, L. (1967). Catechin-flavylium salt condesation reactions. Tetrahedron, 23, 1057–1064.

    Article  CAS  Google Scholar 

  • Jurd, L. (1969). Review of polyphenol condensation reactions and their possible occurrence in the aging of wines. Am. J. Enol. Vitic., 20, 191–195.

    CAS  Google Scholar 

  • Jurd, L., & Somers, T. C. (1970). The formation of xanthylium salts from proanthocyanidins. Phytochemistry, 9, 419–427.

    Article  CAS  Google Scholar 

  • Kallithraka, S., Bakker, J., & Clifford, M. N. (1998). Evidence that salivary proteins are involved in astringency. J. Sens. Stud., 13, 29–43.

    Article  Google Scholar 

  • Kandra, L., Gyemant, G., Zajacz, A., & Batta, G. (2004). Inhibitory effects of tannin on human salivary alpha-amylase. Biochem. Bioph. Res. Comm., 319, 1265–1271.

    Article  CAS  Google Scholar 

  • Kauffman, D. L, & Keller, P. J. (1979). Basic proline-rich proteins in human-parotid saliva from a single subject. Arch. Oral Biol., 24, 249–256.

    Article  CAS  Google Scholar 

  • Kauffman, D. L., Bennick, A., Blum, M., & Keller, P. J. (1991). Basic proline-rich proteins from human parotid-saliva – Relationships of the covalent structures of 10 proteins from a single individual. Biochemistry, 30, 3351–3356.

    Article  CAS  Google Scholar 

  • Kennedy, J. A., Matthews M. A., & Waterhouse A. L. (2000). Changes in grape seed polyphenols during fruit ripening. Phytochemistry, 55, 77–85,

    Article  CAS  Google Scholar 

  • Kovac, V., Alonso, E., Bourzeix, M., & Revilla, E. (1992). Effect of several enological practices on the content of catechins and proanthocyanidins of red wines. J. Agric. Food Chem., 40, 1953–1957.

    Article  CAS  Google Scholar 

  • Kovac, V., Alonso, E., & Revilla, E. (1995). The effect of adding supplementary quantities of seeds during fermentation on the phenolic composition of wines. Am. J. Enol. Vitic., 46, 363–367.

    CAS  Google Scholar 

  • Krueger, C. G., Dopke, N. C., Treichel, P. M., Folts, J., & Reed, J. D. (2000). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyflavan-3-ols in grape seed extract. J. Agric. Food Chem., 48, 1663–1667.

    Article  CAS  Google Scholar 

  • Laborde, B., Moine-Ledoux, V., Richard, T., Saucier, C., Dubourdieu, D., & Monti, J.-P. (2006). PVPP-polyphenol complexes: A molecular approach. J. Agric. Food Chem., 54, 4383–4389.

    Google Scholar 

  • Lea, A. G. H. (1990). Bitterness and astringency: the procyanidines of fermented apple ciders. In R. L. Rouseff (Ed.), Bitterness in Foods and Beverages. Developments in Food Science 25 (pp. 123–143). Amsterdam: Elsevier.

    Google Scholar 

  • Lea, A. G. H. (1992). Flavor, color, and stability in fruit products: The effect of polyphenols. In R. W. Hemingway & P. E. Laks (Ed.), Plant Polyphenols (pp. 827–837). New York: Plenum Press.

    Google Scholar 

  • Lee, C. B., & Lawless, H. T. (1991). Time-course of astringent sensations. Chem. Senses, 16, 225–238.

    Article  Google Scholar 

  • Lesschaeve, I., & Noble, A. C. (2005). l Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nut., 81, 330S–335S.

    CAS  Google Scholar 

  • Levengood, J., & Boulton, R. (2004). The variation in the color due to copigmentation in young Cabernet Sauvignon wines. In A. L. Waterhouse & J. A. Kennedy (Eds.), Red wine color: revealing the mysteries (pp. 35–52). Washington DC: American Chemical Society.

    Google Scholar 

  • Lewis, C. E., Walker, J. R. L., & Lancaster, J. E. (1995). Effect of polysaccharides on the color of anthocyanins. Food Chem., 54, 315–319.

    Article  CAS  Google Scholar 

  • Liao, H., Cai, Y., & Haslam, E. (1992). Polyphenols interactions. Anthocyanins: copigmentation and colour changes in young red wines. J. Sci. Food Agric., 59, 299–305.

    Article  CAS  Google Scholar 

  • Llaudy, M. C., Canals, R., Canals, J. M., Rozes, N., Arola, L., & Zamora, F. (2004). New method for evaluating astringency in red wine. J. Agric. Food Chem., 52, 742–746.

    Article  CAS  Google Scholar 

  • Lorenzo, C., Pardo, F., Zalacain, A., Alonso, G. L., & Salinas M. R. (2005). Effect of Red Grapes Co-winemaking in Polyphenols and Color of Wines. J. Agric. Food Chem., 53, 7609–7616.

    Article  CAS  Google Scholar 

  • Lu, Y., & Bennick, A. (1998). Interaction of tannin with human salivary proline-rich proteins. Arch. Oral Biol., 43, 717–728.

    Article  CAS  Google Scholar 

  • Luck, G., Liao, H., Murray, N. J., Grimmer, H. R., Warminski, E. E., Williamson, M. P., Lilley, T. H., & Haslam, E. (1994). Polyphenols, astringency and proline-rich proteins. Phytochemistry, 37, 357–371.

    Article  CAS  Google Scholar 

  • Malien-Aubert, C., Dangles, O., & Amiot, M. J. (2002). Influence of procyanidins on the color stability of eonin solutions. J. Agric. Food Chem., 50, 3299–3305.

    Article  CAS  Google Scholar 

  • Mateus, N., & de Freitas, V. A. P. (2001). Evolution and stability of anthocyanin-derived pigments during port wine aging. J. Agric. Food Chem., 49, 5217–5222.

    Article  CAS  Google Scholar 

  • Mateus, N., de Pascual-Teresa, S., Rivas-Gonzalo, J. C., Santos-Buelga, C., & de Freitas, V. A. P. (2002a). Structural diversity of anthocyanin-derived pigments in port wines. Food Chem., 76, 335–342.

    Google Scholar 

  • Mateus, N., Silva, A. M. S., Santos-Buelga, C., Rivas-Gonzalo, J. C., & de Freitas, V. A. P. (2002b). Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J. Agric. Food Chem., 50, 2110–2116.

    Google Scholar 

  • Mateus, N., Silva, A. M. S., Rivas-Gonzalo, J. C., Santos-Buelga, C., & de Freitas, V. A. P. (2003). A new class of blue anthocyanin-derived pigments isolated from red wines. J. Agric. Food Chem., 51, 1919–1923.

    Article  CAS  Google Scholar 

  • Mateus, N., Carvalho, E., Luis, C., & de Freitas, V. A. P. (2004a). Influence of the tannin structure towards the disruption effect of carbohydrates on protein-tannin aggregates. Anal. Chim. Acta, 513, 135–140.

    Article  CAS  Google Scholar 

  • Mateus, N., Oliveira, J., Santos-Buelga, C., Silva, A. M. S., & de Freitas, V. A. P. (2004b). NMR structural characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett., 45, 3455–3457.

    Google Scholar 

  • Mateus, N., Pinto, R., Ruão, P., & de Freitas, V. A. P. (2004c). Influence of the addition of grape seed procyanidins to Port wines in the resulting reactivity with human salivary proteins. Food Chem., 84, 195–200.

    Article  CAS  Google Scholar 

  • Maury, C., Sarni-Manchado, P., Lefebvre, S., Cheynier, V., & Moutounet, M. (2003). Influence of fining with plant proteins on proanthocyanidin composition of red wines. Am. J. Enol. Vitic., 54, 105–111.

    CAS  Google Scholar 

  • McDonald, M. S., Hughes, M., Burns, J., Lean, M. E. J., Matthews, D., & Crozier, A. (1998). Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J. Agric. Food Chem., 46, 368–375.

    Article  CAS  Google Scholar 

  • Messana, I., Cabras, T., Inzitari, R., Lupi, A., Zuppi, C., Olmi, C., Fadda, M. B., Cordaro, M., Giardina, B., & Castagnola, M. (2004). Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J. Proteome Res., 3, 792–800.

    Article  CAS  Google Scholar 

  • Mirabel, M., Saucier, C., Guerra, C., & Glories, Y. (1999). Copigmentation in model wine solutions: Ocurrence and relation to wine ageing. Am. J. Enol. Vitic., 50, 211–218.

    CAS  Google Scholar 

  • Mirabel, E. (1991). Polyphenol Interactions.5. Anthocyanin Copigmentation. J. Chem. Soc. Perkin Trans., 2, 1287–1296.

    Google Scholar 

  • Monagas, M., Martin-Alvarez, P. J., Bartolome, B., & Gomez-Cordoves, C. (2006). Statistical interpretation of the color parameters of red wines in function of their phenolic composition during aging in bottle. Eur. Food Res. Tech., 222, 702–709.

    Article  CAS  Google Scholar 

  • Monteleone, E., Condelli, N., Dinnella, C., & Bertuccioli, M. (2004). Prediction of perceived astringency induced by phenolic compounds. Food Qual. Pref., 15, 761–769.

    Article  Google Scholar 

  • Murray, N. J., Williamson, M. P., Lilley, T. H., & Haslam, E. (1994). Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR Spectroscopy. Eur. J. Biochem., 219, 923–935.

    Article  CAS  Google Scholar 

  • Naczk, M., Oickle, D., Pink, D., & Shahidi, F. (1996). Protein precipitating capacity of crude canola tannins: Effect of pH, tannin, and protein concentrations. J. Agric. Food Chem., 44, 2144–2148.

    Article  CAS  Google Scholar 

  • Noble, A. (1990). Bitterness and astringency in wine. In R. Rousseff (Ed.), Bitterness in Foods and Beverages (pp. 145–158). Amsterdam: Elsevier.

    Google Scholar 

  • Nonier, M. F., Pianet, I., Laguerre, M., Vivas, N., & Vivas de Gaulejac, N. (2006). Condensation products derived from flavan-3-ol oak wood aldehydes reaction. 1. Structural investigation. Anal. Chim. Acta, 563, 76–83.

    Article  CAS  Google Scholar 

  • Oh, H. I., Hoff, J. E., Armstrong, G. S., & Haff, L. A. (1980). Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem., 28, 394–398.

    Article  CAS  Google Scholar 

  • Okuda, T., Mori K., & Hatano T. (1985). Relationship of the structure of tannins to the binding activities with hemoglobin and methylene blue.Chem. Pharm. Bull., 33, 1424–1433.

    Google Scholar 

  • Oliveira, J., Fernandes, V., Miranda, C., Santos-Buelga, C., Silva, A. M. S., de Freitas, V. A. P., & Mateus, N. (2006a). Color properties of four cyanidin-pyruvic acid adducts. J. Agric. Food Chem., 54, 6894–6903.

    Article  CAS  Google Scholar 

  • Oliveira, J., Santos-Buelga, C., Silva, A. M. S., de Freitas, V. A. P., & Mateus, N. (2006b). Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Anal. Chim. Acta, 563, 2–9.

    Article  CAS  Google Scholar 

  • Ozawa, T., Lilley, T. H., & Haslam, E. (1987). Polyphenol interactions - astringency and the loss of astringency in ripening fruit. Phytochemistry, 26, 2937–2942.

    Article  CAS  Google Scholar 

  • Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. J. Agric. Food Chem., 53, 158–163.

    Article  CAS  Google Scholar 

  • Peleg, H., Karine Gacon, K., Schlich, P., & Noble, A. C. (1999). Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric., 79, 1123–1128.

    Article  CAS  Google Scholar 

  • Perez-Prieto, L. J., de la Hera-Orts, M. L., Lopez-Roca, J. M., Fernandez-Fernandez, J. I., & Gomez-Plaza, E. (2003). Oak-matured wines: influence of the characteristics of the barrel on wine colour and sensory characteristics. J. Sci. Food Agric., 83, 1445–1450.

    Article  CAS  Google Scholar 

  • Pissarra, J., Mateus, N., Rivas-Gonzalo, J., Santos-Buelga, C., & de Freitas, V. A. P. (2003). Reaction between malvidin-3-glucoside and (+)-catechin in model solutions containing different aldehydes. J. Food Sci., 68, 476–481.

    Article  CAS  Google Scholar 

  • Pissarra, J., Lourenço, S., González-Paramás, A. M., Mateus, N., Santos-Buelga, C., Silva, A. M. S., & de Freitas, V. A. P. (2004). Structural characterization of new malvidin-3-glucoside-catechin aryl/alkyl pigments. J. Agric. Food Chem., 52, 5519–5526.

    Article  CAS  Google Scholar 

  • Pissarra, J., Lourenςo, S., González-Paramás, A. M., Mateus, N., Santos-Buelga, C., Silva, A. M. S., & de Freitas, V. A. P. (2005). Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food Chem., 90, 81–87.

    Article  CAS  Google Scholar 

  • Poncet-Legrand, C., Edelmann, A., Putaux, J. L., Cartalade, D., Sarni-Manchado, P., & Vernhet, A. (2006). Poly(L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocoll., 20, 687–697.

    Article  CAS  Google Scholar 

  • Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena – An overview. Crit. Rev. Food Sci. Nut., 47, 1–19.

    Article  CAS  Google Scholar 

  • Preys, S., Mazerolles, G., Courcoux, P., Samson, A., Fischer, U., Hanafi, M., Bertrand, D., & Cheynier, V. (2006). Relationship between polyphenolic compostion and some sensory properties in red wines using multiway analyses. Anal. Chim. Acta, 563, 126–136.

    Article  CAS  Google Scholar 

  • Remy, S., Fulcrand, H., Labarbe, B., Cheynier, V., & Moutounet, M. (2000). First confirmation in red wine of products resulting from direct anthocyanin-tannin reactions. J. Sci. Food Agric., 80, 745–751.

    Article  CAS  Google Scholar 

  • Remy-Tanneau, S., Le Guernevé, C., Meudec, E., & Cheynier, V. (2003). Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometry. J. Agric. Food Chem., 51, 3592–3597.

    Article  CAS  Google Scholar 

  • Rentzsch. M., Schwarz, M., Winterhalter, P., & Hermosin, I., (2007). Formation of hydroxyphenyk-pyranoanthocyanins in Grenache wines: precursor levels and evolution during aging. J. Agric. Food Chem., 55, 4883–4888.

    Article  CAS  Google Scholar 

  • Ribéreau-Gayón, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000). Handbook of Enology. Vol. 2. The chemistry of wine stabilization and treatments. London: John Wiley and Sons, Inc.

    Google Scholar 

  • Riou, V., Vernhet, A., Doco, T., &Moutounet, M. (2002). Aggregation of grape seed tannins in model wine – effect of wine polysaccharides. Food Hydrocol., 16, 17–23.

    Article  CAS  Google Scholar 

  • Rivas-Gonzalo, J. C., Bravo-Haro, S., &Santos-Buelga, C. (1995). Detection of compounds formed through the reaction of malvidin 3-monoglucoside and catechin in the presence of acetaldehyde. J. Agric. Food Chem., 43, 1444–1449.

    Article  CAS  Google Scholar 

  • Salas, E., Atanasova, V., Poncet-Legrand, C., Meudec, E., Mazauric, J. P., & Cheynier, V. (2004a). Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Anal. Chim. Acta, 513, 325–332.

    Article  CAS  Google Scholar 

  • Salas, E., Le Guerneve, C., Fulcrand, H., Poncet-Legrand, C., & Cheynier, V. (2004b). Structure determination and colour properties of a new directly linked flavanol-anthocyanin dimer. Tetrahedron Lett., 45, 8725–8729.

    Article  CAS  Google Scholar 

  • Salas, E., Dueñas, M., Schwarz, M., Winterhalter, P., Cheynier, V., & Fulcrand, H. (2005). Characterization of pigments from different high speed countercurrent chromatography wine fractions. J. Agric. Food Chem., 53, 4536–4546.

    Article  CAS  Google Scholar 

  • Santos-Buelga, C., & Scalbert, A. (2000). Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric., 80, 1094–1117.

    Article  CAS  Google Scholar 

  • Sarni-Manchado, P., & Cheynier, V. (2002). Study of non-covalent complexation between catechin derivatives and peptides by electrospray ionization mass spectrometry. J. Mass Spectr., 37, 609–616.

    Article  CAS  Google Scholar 

  • Sarni-Manchado, P., Cheynier, V., & Moutounet, M. (1997). Reaction of enzimatically generated quinones with malvidin-3-glucoside. Phytochemistry, 45, 1365.

    Article  CAS  Google Scholar 

  • Schwarz, M., Jerz, G., & Winterhalter, P. (2003). Isolation and structure of Pinotin A, a new anthocyanin derivative from Pinotage wine. Vitis 42, 105–106.

    CAS  Google Scholar 

  • Schwarz, M., & Winterhalter, P. (2004). Novel aged anthocyanins from Pinotage wines: isolation, characterization, and pathway of formation. In A. L. Waterhouse & J. A. Kennedy (Eds.), Red wine color: revealing the mysteries (pp. 179–197). Washington DC.

    Google Scholar 

  • Siebert, K. J., Troukhanova, N. V., &Lynn, P. Y. (1996). Nature of polyphenol-protein interactions. J. Agric. Food Chem., 44, 80–85.

    Article  CAS  Google Scholar 

  • Simon, C., Barathieu, K., Laguerre, M., Schmitter, J. M., Fouquet, E., Pianet, I., &Dufourc, E. J. (2003). Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach. Biochemistry, 42, 10385–10395.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Noble A. C. (1976).Wine flavor and phenolic substances. In C. O. Chichester (Ed.), Advance in Food Research, Suppl. 3 (pp. 47–70). Washington: American Chemical Society.

    Google Scholar 

  • Soares, S., Mateus, N., & de Freitas, V. A. P. (2007). Interaction of different polyphenols with bovine serum albumin (BSA) and human α-amylase (HSA) by quenching fluorescence. J. Agric. Food Chem., 55, 6726–6735.

    Article  CAS  Google Scholar 

  • Somers, T. C. (1966). Wine tannins – isolation of condensed flavonoid pigments by gel-filtration. Nature, 209, 368–370.

    Article  CAS  Google Scholar 

  • Somers, T. C. (1971). The phenolic nature of wine pigments. Phytochemistry, 10, 2175–2186.

    Article  CAS  Google Scholar 

  • Somers, T. C., & Evans, M. E. (1979). Grape pigment phenomena - interpretation of major color losses during vinification. J. Sci. Food Agric., 30, 623–633.

    Article  CAS  Google Scholar 

  • Souquet, J. M., Cheynier, V., Brossaud, F., & Moutounet, M. (1996). Polymeric proanthocyanidins from grape skins. Phytochemistry, 43, 509–512.

    Article  CAS  Google Scholar 

  • Sousa, C., Mateus, N., Perez-Alonso, J., Santos-Buelga, C., & de Freitas, V. A P. (2005). Preliminary study of oaklins, a new class of brick-red catechin-pyrylium pigments resulting from the reaction between catechin and wood aldehydes. J. Agric. Food Chem., 53, 9249–9256.

    Article  CAS  Google Scholar 

  • Sousa, C., Mateus, N., Silva, A. M. S., González-Paramás, A.,M., Santos-Buelga, C., & de Freitas, V. (2007). Structural and chromatic characterization of a new malvidin-3-glucoside-vanillyl-catechin pigment. Food Chem., 102, 1344–1351.

    Article  CAS  Google Scholar 

  • Taira, S., Ono, M., & Matsumoto, N. (1997). Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biol. Technol., 12, 265–271.

    Article  CAS  Google Scholar 

  • Tanaka, T., Takahashi, R., Houno, I., & Nonaka G.-I. (1994). Chemical evidence for the de-aastringency (insolubilization of tannins) of persimmon fruit. J. Chem. Soc. Perkin Trans., 1, 3013–3022.

    Article  Google Scholar 

  • Timberlake, C. F., & Bridle, P. (1976). Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic., 27, 97–105.

    CAS  Google Scholar 

  • Troszynska, A., Amarowicz, R., Lamparski, G., Wolejszo, A., & Barylko-Pikielna, N. (2006). Investigation of astringency of extracts obtained from selected tannins-rich legume seeds. Food Qual. Pref., 17, 31–35.

    Article  Google Scholar 

  • Vernhet, A., Pellerin, P., Prieur, C., Osmianski, J., & Moutounet, M. (1996). Charge properties of some grape and wine polysaccharide and polyphenolic fractions. Am. J. Enol. Vitic., 47, 25–30.

    CAS  Google Scholar 

  • Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., Cheynier, V., & Waters E. (2003a). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric., 83, 564–573.

    Article  CAS  Google Scholar 

  • Vidal, S., Cheynier, V, Waters E, & Noble A. C. (2003b). Effect of tannin composition and wine carbohydrates on astringency and bitterness. In H. Meiselman (Ed.), 5th Pangborn Sensory Science Symposium. Boston: Elsevier.

    Google Scholar 

  • Vidal, S., Francis, L., Noble, A., Kwiatkowski, M., Cheynier, V., & Waters, E. (2004a). Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta, 513, 57–65.

    Article  CAS  Google Scholar 

  • Vidal, S., Meudec, E., Cheynier, V., Skouroumounis, G., & Hayasaka, Y. (2004b). Mass spectrometric evidence for the existence of oligomeric anthocyanins in grape skins. J. Agric. Food Chem., 52, 7144–7151.

    Article  CAS  Google Scholar 

  • Vidal, S., Courcoux, P., Francis, L., Kwiatkowski, M., Gawel, R., Williams, P., Waters, E., & Cheynier, V. (2004c). Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual. Pref., 15, 209–217.

    Article  Google Scholar 

  • Vivar-Quintana, A. M., Santos-Buelga, C., Francia-Aricha, E., & Rivas-Gonzalo, J. C. (1999). Formation of anthocyanin-derived pigments in experimental red wines. Food Sci. Technol. Inter., 5, 347–352.

    Article  CAS  Google Scholar 

  • Vivar-Quintana, A. M., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2002). Anthocyanin-derived pigments and colour of red wines. Anal. Chim. Acta, 458, 147–155.

    Article  CAS  Google Scholar 

  • Vivas de Gaulejac, N., Vivas, N., Absalon, C., & Nonier, M. F. (2001). Identification of procyanidin A2 in grape and wine of Vitis vinifera L. cv Merlot Noir and Carbernet-Sauvignon. J. Int. Sci. Vigne Vin, 35, 51–56.

    Google Scholar 

  • Wildenradt, H. L., & Singleton V. L. (1974). Production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. J. Agric. Food Chem., 25, 119–126.

    CAS  Google Scholar 

  • Wroblewski, K., Muhandiram, R., Chakrabartty, A., & Bennick, A. (2001). The molecular interaction of human salivary histatins with polyphenolic compounds. Eur. J. Biochem., 268, 4384–4397.

    Article  CAS  Google Scholar 

  • Yan, Q. Y., & Bennick, A. (1995). Identification of histatins as tannin-binding proteins in human saliva. Biochem. J., 311, 341–347.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Santos-Buelga, C., Freitas, V.d. (2009). Influence of Phenolics on Wine Organoleptic Properties. In: Moreno-Arribas, M.V., Polo, M.C. (eds) Wine Chemistry and Biochemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74118-5_24

Download citation

Publish with us

Policies and ethics