Skip to main content

Protective Effect of Milk Peptides: Antibacterial and Antitumor Properties

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 606))

Abstract

There is no doubt that milk proteins provide excellent nutrition for the suckling. However, apart from that, milk proteins can also exert numerous physiological activities benefiting the suckling in a variety ofways. These activities include enhancement of immune function, defense against pathogenic bacteria, viruses, and yeasts, and development of the gut and its functions. Besides the naturally occurring, biologically active proteins present in milk, a variety of bioactive peptides are encrypted within the sequence of milk proteins that are released upon suitable hydrolysis of the precursor protein. A large range of bioactivities has been reported for milk protein components, with some showing more than one kind of biological activity (Korhonen&Pihlanto, 2006). This chapter reviews the most important antimicrobial and antitumor peptides derived from milk proteins, especially those that may have a physiological significance to the suckling neonate. Antimicrobial peptides present in milk that are not derived frommilk proteins are also considered. Special attention is given to the generation of these peptides by the action of different proteolytic enzymes and the origin of these enzymes since, if present in the digestive tract, it is likely that the peptides might play a role in the host defense system. Finally, the most relevant in vivo studies carried out with this kind of bioactive peptides are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almaas, H., Holm, H., Langrud, T., Flengsrud, R., & Vegarud, G.E. (2006). In vitro studies of the digestion of caprine whey proteins by human gastric and duodenal juice and the effects on selected microorganisms. British Journal of Nutrition, 96, 562–569.

    CAS  Google Scholar 

  • Armogida, S. A., Yannaras, N. M., Melton, A. L., & Srivastava, M. (2004). Identification and quantification of innate immune system mediators in human breast milk. Allergy and Asthma Proceedings, 25, 297–304.

    CAS  Google Scholar 

  • Bals, R., Wang X., Wu, Z., Freeman, T., Bafna, V., Zasloff, M., & Wilson, J. M. (1998). Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. Journal of Clinical Investigation, 102, 874–880.

    CAS  Google Scholar 

  • Bals, R., Weiner, D. J., Moscioni, A. D., Meegalla, R. L., & Wilson, J. M. (1999). Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infection and Immunity, 67, 6084–6089.

    CAS  Google Scholar 

  • Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta, 1121, 130–136.

    CAS  Google Scholar 

  • Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., & Tomita, M. (1993). Killing of Candida albicans by lactoferricin-B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Medical Microbiology and Immunology, 182, 97–105.

    CAS  Google Scholar 

  • Beucher, S., Levenez, F., Yvon, M., & Corring, T. (1994). Effect of caseinomacropeptide (CMP) on choleocystokinin (CCK) release by intestinal cells in rat. Journal of Nutritional Biochemistry, 5, 578–584.

    CAS  Google Scholar 

  • Bhimani, R. S., Vendrov, Y., & Furmanski, P. (1999). Influence of lactoferrin feeding and injection against systemic staphylococcal infections in mice. Journal of Applied Microbiology, 86, 135–144.

    CAS  Google Scholar 

  • Biziulevicius, G. A., & Zukaite, V. (1999). Lysosubtilin modification, Fermosob, designed for polymeric carrier-mediated intestinal delivery of lytic enzymes: Pilot-scale preparation and evaluation of this veterinary medicinal product. International Journal of Pharmacology, 189, 43–55.

    CAS  Google Scholar 

  • Biziulevicius, G. A., Zukaite, V., Normatiene, T., Biziuleviciene, G., & Arestov, I. (2003). Non-specific immunity-enhancing effects of tryptic casein hydrolysate versus Fermosob for treatment/prophylaxis of newborn calf colibacillosis. FEMS Immunology and Medical Microbiology, 39, 155–161.

    CAS  Google Scholar 

  • Bowdish, D. M. E., Davidson, D. J., & Hancock, R. E. W. (2005). A re-evaluation of the role of host defence peptides in mammalian immunity. Current Protein and Peptide Science, 6, 35–51.

    CAS  Google Scholar 

  • Brody, E. P. (2000). Biological activities of bovine glycomacropeptide. British Journal of Nutrition, 84, S39–S46.

    CAS  Google Scholar 

  • Brogden, K. A., Ackermann, M., Zabner, J., & Welsh, M. J. (2004). Antimicrobial peptides suppress microbial infection and sepsis in animal models. In R. E. W. Hancock & D. Devine (Eds.), Mammalian Host Defense Peptides (pp. 189–229). New York: Cambridge University Press.

    Google Scholar 

  • Chen, H., Xu, Z., Peng, L., Fang, X., Yin, X., Xu, N., & Cen, P. (2006a). Recent advances in the research and development of human defensins. Peptides, 27, 931–940.

    CAS  Google Scholar 

  • Chen, H. L., Yeng, C. C., Lu, C. Y., Yu, C. H., & Chen, C. M. (2006b). Synthetic porcine lactoferricin with a 20-residue peptide exhibits antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans. Journal of Agricultural and Food Chemistry, 54, 3277–3282.

    Google Scholar 

  • Dashper, S. G., O‘Brien-Simpson, N. M., Cross, K. J., Paolini, R. A., Hoffman, B., Catmull, D. V., Malkoski, M., & Reynolds, E. C. (2005). Divalent metal cations increase the activity of the antimicrobial peptide kappacin. Antimicrobial Agents and Chemotherapy, 49, 2322–2328.

    CAS  Google Scholar 

  • Di Mario, F., Aragona, G., Dal Bo, N., Cavestro, G. M., Cavallaro, L., Iori, V., Comparato, G., Leandro, G., Pilotto, A., & Franze, A. (2003). Use of bovine lactoferrin for Helicobacter eradication. Digestive and Liver Disease, 35, 706–710.

    Google Scholar 

  • Dommett, R., Zilbauer, M., George, J. T., & Bajaj-Elliot, M. (2005). Innate immune defence in the human gastrointestinal tract. Molecular Immunology, 42, 903–912.

    CAS  Google Scholar 

  • Eliassen, L. T., Berge, G., Sveinbjornsson, B., Svendsen, J. S., Vorland, L. H., & Rekdal, Ø. (2002). Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Research, 22, 2703–2710.

    CAS  Google Scholar 

  • Eliassen, L. T., Berge, G., Leknessund, A., Wikman, M., Lindin, I., Løkke, C., Pontham, F., Johnsen, J. I., Sveinbjørnsson, B., Kogner, P., Flægstad, T., & Rekdal, Ø. (2006). The antimicrobial peptide, Lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft in vivo. International Journal of Cancer, 119, 493–500.

    CAS  Google Scholar 

  • El-Zahar, K., Sitohy, M., Choiset, Y., Métro, F., Haertlé, T., & Chobert, J. M. (2004). Antimicrobial activity of ovine whey protein and their peptic hydrolysates. Milchwissenschaft, 59, 653–656.

    CAS  Google Scholar 

  • Epand, R. M., & Vogel, H. J. (1999). Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta, 1462, 11–28.

    CAS  Google Scholar 

  • Florén, C. H., Chinenye, S., Elfstrand, L., Hagman, C., & Ihse, I. (2006). Coloplus, a new product based on bovine colostrums, alleviates HIV-associated diarrhoea. Scandinavian Journal of Gastroenterology, 41, 682–686.

    Google Scholar 

  • Floris, R., Recio, I., Berkhout, B., & Visser, S. (2003). Antibacterial and antiviral effects of milk proteins and derivatives thereof. Current Pharmaceutical Design, 9, 1257–1275.

    CAS  Google Scholar 

  • Fox, P. F. (2003). Milk proteins: General and historical aspects. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced Dairy Chemistry 1. Proteins (pp. 1–49). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Furlong, S. J., Mader, J. S., & Hoskin, D. W. (2006). Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cell cancer cells is enhanced by C6 ceramide or tamoxifen. Oncology Reports, 15, 1385–1390.

    CAS  Google Scholar 

  • Ganz, T., & Weiss, J. (1997). Antimicrobial peptides of phagocytes and epithelia. Seminars of Hematology, 34, 343–354.

    CAS  Google Scholar 

  • Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell and Molecular Life Science, 62, 2588–2598.

    CAS  Google Scholar 

  • Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P., Zasloff, M., & Wilson, J. M. (1997). Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell, 88, 553–560.

    CAS  Google Scholar 

  • Gudmundsson, G. H., Agerberth, B., Odeberg, J., Bergman, T., Olsson, B., & Salcedo, R. (1996). The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. European Journal of Biochemistry, 238, 325–332.

    CAS  Google Scholar 

  • Harder, J., Bartels, J., Christophers, E., & Schroder, J. M. (1997). A peptide antibiotic from human skin. Nature, 387, 861.

    Google Scholar 

  • Hata, I., Higashiyama, S., & Otani, H. (1998). Identification of a phosphopeptide in bovine αs1-casein digests as a factor influencing proliferation and immunoglobulin production in lymphocyte cultures. Journal of Dairy Research, 65, 569–578.

    CAS  Google Scholar 

  • Haukland, H. H., Ulvatne, H., Sandvik, K., & Vorland, L. H. (2001). The antimicrobial peptides lactoferricin B and magainin-2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Letters, 508, 389–393.

    CAS  Google Scholar 

  • Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., & Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. A pplied and Environmental Microbiology, 72, 2260–2264.

    CAS  Google Scholar 

  • Hernández-Ledesma, B., López-Expósito, I., Ramos, M., & Recio, I. (2006). Bioactive peptides from milk proteins. In R. Pizzano (Ed.), Immunochemistry in Dairy Research (pp. 37-60). Kerala, India: Trivandrum.

    Google Scholar 

  • Hill, R. D., Lahov, E., & Givol, D. (1974). A rennin-sensitive bond in alpha and beta casein. Journal of Dairy Research, 41, 147–153.

    CAS  Google Scholar 

  • Hirmo, S. Kelm, S., Iwersen, M., Hotta, K., Goso, Y., Ishihara, K., Suguri, T., Morita, M., Wadström, T., & Schauer, R. (1998). Inhibition of Helicobacter pylori sialic acid-specific haemagglutination by human gastrointestinal mucins and milk glycoproteins. FEMS Immunology and Medical Microbiology, 20, 275–281.

    CAS  Google Scholar 

  • Hoek, K., Milne, J. M., Grieve, P. A., Dionoysius, D. A., & Smith, R. (1997). Antibacterial activity of bovine lactoferrin-derived peptides. Antimicrobial Agents and Chemotherapy, 41, 54–59.

    CAS  Google Scholar 

  • Ibrahim, H. R. (2003). Hen egg white lysozyme and ovotransferrin: Mystery, structural role and antimicrobial function. Proceedings of the 10th European Symposium on the Quality of Eggs and Egg Products. Saint-Brieuc, France, September, pp. 1113–1128.

    Google Scholar 

  • Ibrahim, H. R., Thomas, U., & Pellegrini, A. (2001). A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. Journal of Biological Chemistry, 276, 43767–43774.

    CAS  Google Scholar 

  • Iigo, M., Kuhara, T., Ushida, Y., Sekine, K., Moore, M. A., & Tsuda, H. (1999). Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clinical & Experimental Metastasis, 17, 35–40.

    CAS  Google Scholar 

  • Isaacs, C. E. (2005). Human milk inactivates pathogens individually, additively and synergistically. Journal of Nutrition, 135, 1286–1288.

    CAS  Google Scholar 

  • Isamida, T., Tanaka, T., Omata, Y., Yamauchi, K., Shimazaki, K., & Saito, A. (1998). Protective effect of lactoferricin against Toxoplasma gondii infection in mice. Journal of Veterinary Medical Science, 60, 241–244.

    CAS  Google Scholar 

  • Isoda, H., Kawasaki, Y., Tanimoto, M., Dosako, S., & Idota, T. (1999). Use of compounds containing or binding sialic acid to neutralize bacterial toxins. European patent application no. 385112.

    Google Scholar 

  • Jia, H. P., Starner, T., Ackerman, M., Kirby, P., Tack, B. F., & McCray, P. B. (2001). Abundant human β-defensin-1 expression in milk and mammary gland epithelium. Journal of Pediatrics, 138, 109–112.

    CAS  Google Scholar 

  • Kampa, M., Bakogeorgou, E., Hatzoglou, A., Damianaki, A., Martin, P. M., & Castanas, E. (1997). Opioid alkaloids and casomorphin peptides decrease the proliferation of prostatic cells lines (LNCaP, PC3 and DU145) through a partial interaction with opioid receptors. European Journal of Pharmacology, 335, 255–265.

    CAS  Google Scholar 

  • Kawaguchi, S., Hayashi, T., Masano, H., Okuyama, K., Suzuki, T., & Kawase, K. (1989). Effect of lactoferrin-enriched infant formula on low birth weight infants [in Japanese]. Shuusnakiigaku, 19, 125–130.

    Google Scholar 

  • Kawasaki, Y., Isoda, H., Tanimoto, M., Dosako, S., Idota, T., & Ahiko, K. (1992). Inhibition by lactoferrin and κ-casein glycomacropeptide of binding of cholera toxin to its receptor. Biotechnology and Biochemistry, 56, 195–198.

    CAS  Google Scholar 

  • Kawasaki, Y., Isoda, K., Shinmoto, H., Tanimoto, M., Dosako, S., Idota, T., & Nakajima, I. (1993). Inhibition by κ-casein glycomacropeptide and lactoferrin of influenza virus hemaglutination. Bioscience, Biotechnology and Biochemistry, 57, 1214–1215.

    CAS  Google Scholar 

  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16, 945–960.

    CAS  Google Scholar 

  • Kuwata, H., Yip, T. T., Tomita, M., & Hutchens, T. W. (1998a) Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochimica et Biophysica Acta, 1429, 129–141.

    Google Scholar 

  • Kuwata, H., Yip, T. T., Yamauchi, K., Teraguchi, S., Hayasawa, H., Tomita, M., & Hutchens, T. W. (1998b). The survival of ingested lactoferrin in the gastrointestinal tract of adult mice. Biochemistry Journal, 334, 321–323.

    Google Scholar 

  • Lahov, E., & Regelson W. (1996). Antibacterial and immunostimulating casein-derived substances from milk: Casecidin, isracidin peptides. Federal Chemistry Toxicology, 34, 131–145.

    CAS  Google Scholar 

  • Ledoux, N., Mahé, S., Dubarry, M., Bourras, M., Benamouzig, R., & Tomé, D. (1999). Intraluminal immunoreactive caseinomacropeptide after milk protein ingestion in humans. Nahrung, 43, 196–200.

    CAS  Google Scholar 

  • Lee, H. Y., Park, J. H., Seok, S. H., Baek, M. W., Kim, D. J., Lee, B. H., Kang, P. D., Kim, Y. S., & Park, J. H. (2005). Potencial antimicrobial effects of human lactoferrin against oral infection with Listeria monocytogenes in mice. Journal of Medical Microbiology, 54, 1049–1054.

    CAS  Google Scholar 

  • Lehrer, R. I., & Ganz, T. (2002). Defensins of vertebrate animals. Current Opinion in Immunology, 14, 96–102.

    CAS  Google Scholar 

  • Lehrer, R. I., Lichtenstein, A. K., & Ganz, T. (1993). Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annual Reviews in Immunology, 11, 105–128.

    CAS  Google Scholar 

  • León-Sicarios, N., Reyes-López, M., Ordaz-Pichardo, C., & de la Garza, M. (2006). Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronizadole in Entoamoeba histolytica. Biochemistry and Cell Biology, 84, 327–336.

    Google Scholar 

  • Levay, P. F., & Viljoen, M. (1995). Lactoferrin, a general review. Haematologica, 80, 252–267.

    CAS  Google Scholar 

  • Liepke, C., Zucht, H. D., Forssman, W. G., & Ständker, L. (2001). Purification of novel peptide antibiotics from human milk. Journal of Chromatography B, 752, 369–377.

    CAS  Google Scholar 

  • López-Expósito, I., & Recio, I. (2006). Antibacterial activity of peptides and folding variants from milk proteins. International Dairy Journal, 16, 1294–1305.

    Google Scholar 

  • López-Expósito, I., Gómez-Ruiz, J. A., Amigo, L., & Recio, I. (2006a). Identification of antibacterial peptides from ovine αs2-casein. International Dairy Journal, 16, 1072–1080.

    Google Scholar 

  • López-Expósito, I., Minervini, F., Amigo, L., & Recio, I. (2006b). Identification of antibacterial peptides from bovine κ-casein. Journal of Food Protection, 69, 2992–2997.

    Google Scholar 

  • López-Expósito, I. (2007a). Novel peptides with antibacterial activity derived from food proteins. Study of the mode of action and synergistic effect. Dissertation Tesis. Faculty of Science. Universidad Autónoma de Madrid.

    Google Scholar 

  • López-Expósito, I., Pellegrini, A., Amigo, L., & Recio, I. (2007b). Synergistic effect between different milk-derived peptides and proteins. Journal of Dairy Science (submitted).

    Google Scholar 

  • López-Expósito, I., Quirós, A., Amigo, L., & Recio, I. (2007c). Casein hydrolysates as source of antimicrobial, antioxidant and antihypertensive peptides. Le Lait (in press).

    Google Scholar 

  • Mader, J. S., Salsman, J., Conrad, D. M., & Hoskin, D. W. (2005). Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cells lines. Molecular Cancer Therapy, 4, 612–624.

    CAS  Google Scholar 

  • Mader, J. S., Smyth, D., Marshall, J., & Hoskin, D. W. (2006). Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor165–induced angiogenesis by competing for heparin-like binding sites on endothelial cells. American Journal of Pathology, 169, 1753–1766.

    CAS  Google Scholar 

  • Malkoski, M., Dashper, S. G., O‘Brien-Simpson, N. M., Talbo, G. H., Macris, M., Cross, K. J., & Reynolds, E. C. (2001). Kappacin, a novel antimicrobial peptide from bovine milk. Antimicrobial Agents and Chemotherapy, 45, 2309–2315.

    CAS  Google Scholar 

  • Marshall, K. (2004). Therapeutic applications of whey protein. Alternative Medicine Review, 9, 136–156.

    Google Scholar 

  • Masschalck, B., & Michiels, C. W. (2003). Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical Reviews in Microbiology, 29, 191–214.

    CAS  Google Scholar 

  • Matin, A., & Otani, H. (2002). Cytotoxic and antibacterial activities of chemically synthesized κ-casecidin and its partial peptide fragments. Journal of Dairy Research, 69, 329–334.

    CAS  Google Scholar 

  • McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H., & Coventry, M. J. (2006). Isolation and characterisation of a novel antibacterial peptide from bovine αs1-casein. International Dairy Journal, 16, 316–323.

    CAS  Google Scholar 

  • Meisel, H. (2005). Biochemical properties of peptides encrypted in bovine milk proteins. Current Medicinal Chemistry, 12, 1905–1919.

    CAS  Google Scholar 

  • Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F., Monnet, V., & Gobetti, M. (2003). Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Applied and Environmental Microbiology, 69, 5297–5305.

    CAS  Google Scholar 

  • Muñoz, A., & Marcos, J. F. (2006). Activity and mode of action against fungal phytopathogens of bovine lactoferrin-derived peptides. Journal of Applied Microbiology, 101, 1199–1207.

    Google Scholar 

  • Murakami, M., Dorschner, R. A., Stern, L. J., Lin, K. H., & Gallo, R. L. (2005). Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatric Research, 57, 10–15.

    CAS  Google Scholar 

  • Nakasone, Y., Adjei, A., Yoshise, M., Yamauchi, K., Takase, M., Yamauchi, K., Shimamura, S., & Yamamoto, S. (1994). Effect of dietary lactoferricin on the recovery of mice infected with methicillin-resistant Staphylococcus aureus. Abstract Annual Meeting of the Japanese Society of Nutritional Food Science [in Japanese], p. 50.

    Google Scholar 

  • Nazarowec-White, M., & Farber, J. M. (1997). Thermal resistance of Enterobacter sakazakii in reconstituted dried infant formula. Letters in Applied Microbiology, 24, 9–13.

    CAS  Google Scholar 

  • Newburg, D. S. (2005). Innate immunity and human milk. Journal of Nutrition, 135, 1308–1312.

    CAS  Google Scholar 

  • Okumura, K., Itoh, A., Isogai, E. Hirose, K., Hosokawa, Y., Abiko, Y., Shibata, T., Hirata, M., & Isogai, H. (2004). C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Letters, 212, 185–194.

    CAS  Google Scholar 

  • Otani, H., & Suzuki, H. (2003). Isolation and characterization of cytotoxic small peptides, α-casecidins, from bovine αs1-casein digested with bovine trypsin. Animal Science Journal, 74, 427–435.

    CAS  Google Scholar 

  • Pakkanen, R., & Aalto, J. (1997). Growth factors and antimicrobial factors of bovine colostrums. International Dairy Journal, 7, 285–297.

    CAS  Google Scholar 

  • Pellegrini, A. (2003). Antimicrobial peptides from food proteins. Current Pharmaceutical Design, 9, 1225–1238.

    CAS  Google Scholar 

  • Pellegrini, A., Thomas, U., Bramaz, N., Klauser, S., Humziker, P., & von Fellenberg, R. (1997). Identification and isolation of a bactericidal domain in chicken egg white lysozyme. Journal of Applied Microbiology, 82, 372–378.

    CAS  Google Scholar 

  • Pellegrini, A., Thomas, U, Bramaz, N., Hunziker, P., & Von Fellenberg, R. (1999). Isolation and identification of three bactericidal domains in the bovine α–lactalbumin molecule. Biochimica et Biophysica Acta, 1426, 439–448.

    CAS  Google Scholar 

  • Pellegrini, A., Dettling, C., Thomas, U., & Hunziker, P. (2001). Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulin. Biochimica et Biophysica Acta, 1526, 131–140.

    CAS  Google Scholar 

  • Piertrantoni, A., Ammendolia, M. G., Tinari, A., Siciliano, R., Valenti, P., & Superti, F. (2006). Bovine lactoferrin peptidic fragments envolved in inhibition of Echovirus 6 in vitro infection. Antiviral Research, 69, 98–106.

    Google Scholar 

  • Porter, E. M., Dam, E. V., Valore, E. V., & Ganz, T. (1997). Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infection and Immunology, 65, 2396–2401.

    CAS  Google Scholar 

  • Prouxl, M., Gauthier, S. F., & Roy, D. (1992). Effect of casein hydrolysates on the growth of bifidobacteria. Le Lait, 72, 393–404.

    Google Scholar 

  • Recio, I., & Visser, S. (1999a). Identification of two distinct antibacterial domains within the sequence of bovine αs2-casein. Biochimica et Biophysica Acta, 1428, 314–326.

    CAS  Google Scholar 

  • Recio, I., & Visser, S. (1999b). Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin. In situ enzymatic hydrolysis on an ion-exchange membrane. Journal of Chromatography A, 831, 191–201.

    CAS  Google Scholar 

  • Recio, I., & Visser, S. (2000). Antibacterial and binding characteristics of bovine, ovine and caprine lactoferrins: A comparative study. International Dairy Journal, 10, 597–605.

    CAS  Google Scholar 

  • Recio, I., Quirós, A., Hernández-Ledesma, B., Gómez-Ruiz, J. A., Miguel, M., Amigo, L., López-Expósito, I., Ramos, M., & Aleixandre, A. (2005). Bioactive peptides identified in enzyme hydrolysates from milk caseins and procedure for their obtention. Spanish patent application ES200501373.

    Google Scholar 

  • Roy, M. K., Watanabe, Y., & Tamai, Y. (1999). Induction of apoptosis in HL-60 cells by skimmed milk digested with a proteolytic enzyme from the yeast Saccharomyces cerevisiae. Journal of Bioscience Bioengineering, 88, 426–432.

    CAS  Google Scholar 

  • Roy, M. K., Kuwabara, Y., Hara, K., Watanabe, Y., & Tamai, Y. (2002). Peptides from the N-terminal end of bovine lactoferrin induce apoptosis in human leukemic (HL-60) cells. Journal of Dairy Science, 85, 2065–2074.

    CAS  Google Scholar 

  • Salzman, N. H., Polin, R. A., Harris, M. C., Ruchelli, E., Hebra, A., Zirin-Butler, S., Jawad, A., Porter, E. M., & Bevins, C. L. (1998). Enteric defensin expression in necrotizing enterocolitis. Pediatric Research, 44, 20–26.

    CAS  Google Scholar 

  • Schiffer, M., Chang, C. H., & Stevens, F. J. (1992). The functions of tryptophan residues in membrane proteins. Protein Engineering, 5, 213–214.

    CAS  Google Scholar 

  • Schupbach, P., Neeser, J. R., Golliard, M., Rouvet, M., & Guggenheim, B. (1996). Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. Journal of Dental Research, 75, 1779–1788.

    CAS  Google Scholar 

  • Smith, J. A., Wilkinson, M. C., & Liu, Q. M. (1997). Casein fragments having growth promoting activity. International patent WO 97/16460.

    Google Scholar 

  • Strøm, M. H., Haug, B. E., Rekdal, O., Skar, M. L., Stensen, W., & Svendsen, J. S. (2002). Important structural features of 15 residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochemistry and Cell Biology, 80, 65–74.

    Google Scholar 

  • Teraguchi, S., Ozawa, K., Yasuda, S., Shin, K., Fukuwatari, Y., & Shimamura, S. (1994). The bacteriostatic effects of orally administered bovine lactoferrin on intestinal Enterobacteriaceae of SPF mice fed bovine milk. Bioscience, Biotechnology and Biochemistry, 58,482–487.

    CAS  Google Scholar 

  • Teraguchi, S., Shin, K., Ogata, T., Kingaku, M., Kaino, A., Miyauchi, H., Fukuwatari, Y., & Shimamura, S. (1995). Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine milk. Applied and Environmental Microbiology, 61, 4131–4134.

    CAS  Google Scholar 

  • Tomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S., & Hayasawa, H. (2002). Bovine lactoferrin and lactoferricin derived from milk: Production and applications. Biochemistry and Cell Biology, 80, 109–112.

    CAS  Google Scholar 

  • Tunzi, C. R., Harper, P. A., Bar-Oz, B., Valore, E. V., Semple, J. L., Watson-MacDonell, J., Ganz, T., & Ito, S. (2000). β-Defensin expression in human mammary gland epithelia. Pediatric Research, 48, 30–35.

    CAS  Google Scholar 

  • Turner, J., Cho, Y. Dinh, N. N., Waring, A. J., & Lehrer, R. I. (1998). Activities of LL37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrobial Agents and Chemotherapy, 42, 2206–2214.

    CAS  Google Scholar 

  • Ulvatne, H., Samuelsen, Ø., Haukland, H. H., Krämer, M., & Vorland, L. H. (2004). Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiology Letters, 237, 377–384.

    CAS  Google Scholar 

  • Valore, E. V., Park, C. H., Quayle, A. J., Wiles, K. R., McCray, P. B., & Ganz, T. (1998). Human β-defensin-1, an antimicrobial peptide of urogenital tissues. Journal of Clinical Investigation, 101, 1633–1642.

    CAS  Google Scholar 

  • van der Kraan, M. I. A., Groenink, J., Nazmi, K., Veerman, E. C. I., Bolscher, J. G. M., & Nieuw Amerongen, A. V. (2004). Lactoferrampin: A novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides, 25, 177–183.

    Google Scholar 

  • van Hooijdonk, A. C. M., Kussendrager, K. D., & Steijns, J. M. (2000). In vivo antimicrobial and antiviral activity of components in bovine milk and colostrums involved in non-specific defence. British Journal of Nutrition, 84, 127–134.

    Google Scholar 

  • Vogel, H. J., Schibli, D. J., Weiguo, J., Lohmeier-Vogel, E. M., Epand, R. F., & Epand, R. M. (2002). Towards a structure-function analysis of bovine lactoferricin and related tryptophan and arginine containing peptides. Biochemistry and Cell Biology, 80, 49–63.

    CAS  Google Scholar 

  • Vorland, L. H., Ulvatne, H., Andersen, J., Haukland, H. H., Rekdal, Ø., Svendsen, J. S., & Gutteberg, T. J. (1998). Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scandinavian Journal of Infectious Diseases, 30, 513–517.

    CAS  Google Scholar 

  • Vorland, L. H., Ulvatne, H., Rekdal, Ø., & Svendsen, J. S. (1999). Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli. Scandinavian Journal of Infectious Diseases, 31, 467–473.

    CAS  Google Scholar 

  • Wakabayashi, H., Takase, M., & Tomita, M. (2003). Lactoferricin derived from milk protein lactoferrin. Current Pharmaceutical Design, 9, 1277–1287.

    CAS  Google Scholar 

  • Wakabayashi, H., Kuwata, H., Yamauchi, K., Teraguchi, S., & Yoshitaka, T. (2004). No detectable transfer of dietary lactoferrin or its multifunctional fragments to portal blood in healthy adults rats. Bioscience, Biotechnology and Biochemistry, 68, 853–860.

    CAS  Google Scholar 

  • Wakabayashi, H., Yamauchi, K., & Takase, M. (2006). Lactoferrin: Research, technology and applications. International Dairy Journal, 16, 1241–1251.

    CAS  Google Scholar 

  • Yamauchi, K., Tomita, M., Giehl, T. J., & Ellison, R. T., III (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infection and Immunity, 61, 719–728.

    CAS  Google Scholar 

  • Yang, D., Chertov, O., Bykovskaia, S. N., Chen, Q., Buffo, M. J., Shogan, J., Anderson, M., Schroder, J. M., Wang, J. M., Howard, O. M. Z., & Oppenheim, J. J. (1999). Beta-defensins: Linking innate and adaptative immunity through dendritic and T-cell CCR6. Science, 286, 525–528.

    CAS  Google Scholar 

  • Yang, N., Strøm, M. B., Mekonnen, S. M., Svendsen, J. S., & Rekdal, Ø. (2004). The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. Journal of Peptide Science, 10, 37–46.

    CAS  Google Scholar 

  • Zaiou, M., Nizet, V., & Gallo, R. L. (2003). Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL37) prosequence. Journal of Investigation in Dermatology, 120, 810–816.

    CAS  Google Scholar 

  • Zanetti, M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. Journal of Leukocyte Biology, 75, 39–48.

    Google Scholar 

  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

López-Expósito, I., Recio, I. (2008). Protective Effect of Milk Peptides: Antibacterial and Antitumor Properties. In: Bösze, Z. (eds) Bioactive Components of Milk. Advances in Experimental Medicine and Biology, vol 606. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74087-4_11

Download citation

Publish with us

Policies and ethics