Skip to main content

Protein Misassembly

Macromolecular Crowding and Molecular Chaperones

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

The generic tendency of proteins to misassemble into nonfunctional, and sometimes cytotoxic, structures poses a universal problem for all types of cell. This problem is exacerbated by the high total concentration of macromolecules found within most in-tracellular compartments but it is solved by the actions of molecular chaperones. This review discusses some of the basic evidence and key concepts relating to this conclusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen CB. Principles that govern the folding of polypeptide chains. Science 1973;181:223–230.

    Article  PubMed  CAS  Google Scholar 

  2. Epstein CJ, Goldberg RF, Anfinsen CB. The genetic control of tertiary protein structure: Studies with model systems. Cold Spring Harbor Symp Quant Biol 1963;28:439–448.

    CAS  Google Scholar 

  3. Barraclough R, Ellis RJ. Protein synthesis in chloroplasts. IX. Assembly of newly synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact chloroplasts. Biochim Biophys Acta 1980;608:19–31.

    PubMed  CAS  Google Scholar 

  4. Hemmingsen SM, Woolford C, van der Vies SM et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 1988;333:330–334.

    Article  PubMed  CAS  Google Scholar 

  5. Haas IG, Wabl M. Immunoglobulin heavy chain binding protein. Nature 1983;306:387–389.

    Article  PubMed  CAS  Google Scholar 

  6. Munro S, Pelham SRB. An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 1986;46:291–300.

    Article  PubMed  CAS  Google Scholar 

  7. Young JC, Agashe VR, Siegers K et al. Pathways of chaperone-mediated folding in the cytosol. Nature Revs Mol Cell Biol 2004;5:781–791.

    Article  CAS  Google Scholar 

  8. Laskey RA, Honda BM, Mills AD et al. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 1978;275:416–420.

    Article  PubMed  CAS  Google Scholar 

  9. Kihm AJ, Kong YI, Hong W et al. An abundant erythroid protein that stabilizes free alpha-hemoglobin. Nature 2002;417:758–767.

    Article  PubMed  CAS  Google Scholar 

  10. Ellis RJ. Proteins as molecular chaperones. Nature 1987;328:378–379.

    Article  PubMed  CAS  Google Scholar 

  11. Ellis RJ, Hemmingsen SM. Molecular chaperones: Proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 1989;14:339–342.

    Article  PubMed  CAS  Google Scholar 

  12. Fowler DM, Koulov AV, Alory-Jost C. Functional amyloid formation in mammalian tissue. PloS Biol 2006;4:0001–0008.

    Article  CAS  Google Scholar 

  13. Zettlmeiss G, Rudolph R, Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 1979;18:5567–5571.

    Article  Google Scholar 

  14. Minton AP. Molecular crowding: Analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzym 1988;295:127–149.

    Article  Google Scholar 

  15. Minton AP. Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol 2000;10:34–39.

    Article  PubMed  CAS  Google Scholar 

  16. Minton AP. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 2001;276:10577–10580.

    Article  PubMed  CAS  Google Scholar 

  17. Ellis RJ. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 2001;11:114–119.

    Article  PubMed  CAS  Google Scholar 

  18. Zimmerman SB, Trach SO. Estimation of macromolecular concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 1991;222:599–620.

    Article  PubMed  CAS  Google Scholar 

  19. Minton AP. The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences. Mol Cell Biochem 1983;55:119–140.

    Article  PubMed  CAS  Google Scholar 

  20. Minton AP, Colclasure GC, Parker JC. Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci USA 1992;89:10504–10506.

    Article  PubMed  CAS  Google Scholar 

  21. Zimmerman SB, Minton AP. Macromolecular crowding: Biochemical, biophysical and physiological consequences. Annu Rev Biophys Biomol Struct 1993;22:27–65.

    Article  PubMed  CAS  Google Scholar 

  22. Ellis RJ. Macromolecular crowding: Obvious but underappreciated. Trends Biochem Sci 2001;26:597–604.

    Article  PubMed  CAS  Google Scholar 

  23. van den Berg B, Ellis RJ, Dobson CM. Effects of macromolecular crowding on protein folding and aggregation. EMBO J 1999;18:6927–6933.

    Article  PubMed  Google Scholar 

  24. van den Berg B, Wain R, Dobson CM et al. Macromolecular crowding perturbs protein refolding kinetics: Implications for folding inside the cell. EMBO J 2000;19:3870–3875.

    Article  PubMed  Google Scholar 

  25. Ellis RJ, Minton AP. Protein aggregation in crowded environments. Biol Chem 2006, (in press).

    Google Scholar 

  26. Kota J, Ljungdahl PO. Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol 2005;168:79–88.

    Article  PubMed  CAS  Google Scholar 

  27. Ellis RJ. Revisiting the Anfinsen cage. Folding and Design 1996;1:R9–R15.

    Article  PubMed  CAS  Google Scholar 

  28. Martin J, Hartl FU. The effect of macromolecular crowding on chaperonin-mediated protein folding. Proc Natl Acad Sci USA 94:1107–1112.

    Google Scholar 

  29. Martin J. Chaperonin function-Effects of crowding and confinement. J Mol Recog 2004;17:465–472.

    Article  CAS  Google Scholar 

  30. Ellis RJ. Chaperone function: The orthodox view. In: Henderson B, Pockley AG, eds. Molecular Chaperones and Cell Signalling. Cambridge University Press, 2005:3–41.

    Google Scholar 

  31. Goodsell DS. The Machinery of Life. Springer-Verlag, 1992:68.

    Google Scholar 

  32. Kiseleva EV. Secretory protein synthesis in Chironomus salivary gland cells is not coupled with protein translocation across endoplasmic reticulum membranes. Electron microscopic evidence. FEBS Lett 1989;257:251–253.

    Article  PubMed  CAS  Google Scholar 

  33. Musgrove JE, Ellis RJ. The Rubisco large subunit binding protein. Phil Trans R Soc London B 1986;313:419–428.

    Article  CAS  Google Scholar 

  34. London J, Skrzynia C, Goldberg ME. Renaturation of E. coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur J Biochem 1974;47:409–415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ellis, R.J. (2007). Protein Misassembly. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_1

Download citation

Publish with us

Policies and ethics