Skip to main content

Biglycan Is a Positive Modulator of BMP-2 Induced Osteoblast Differentiation

  • Conference paper
Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

Development of the vertebrate skeleton is a complex process involving genes that control a series of cellular events such as proliferation, migration, mesenchymal condensations and eventually differentiation into osteoblasts and chondrocytes1. For osteoblast differentiation, an intricate and highly regulated interplay of growth factors, receptors/co-receptors, specific extracellular milieu and transcription factors is required2. Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF- ) superfamily, are multifunctional growth factors critically involved in osteoblast differentiation. The BMP functions are exerted through their interaction with specific cell surface receptors, BMP type I and II receptors, leading to the regulation of specific BMP target genes. The signaling is regulated at numerous steps at extracellular, cell surface and intracellular levels3, 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.6. References

  1. B. R. Olsen, A. M. Reginato, and W. Wang, Bone development, Annu Rev Cell Dev Biol 16, 191–220 (2000).

    Article  Google Scholar 

  2. G. Xiao, R. Gopalakrishnan, D. Jiang, E. Reith, M. D. Benson, and R. T. Franceschi, Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells, J Bone Miner Res 17(1), 101–110 (2002).

    Article  Google Scholar 

  3. K. Miyazono, S. Maeda, and T. Imamura, BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk, Cytokine Growth Factor Rev 16(3), 251–263 (2005).

    Article  Google Scholar 

  4. P. ten Dijke, O. Korchynskyi, G. Valdimarsdottir, and M. J. Goumans, Controlling cell fate by bone morphogenetic protein receptors, Mol Cell Endocrinol 211(1–2), 105–113 (2003).

    Google Scholar 

  5. R. V. Iozzo, The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins, J Biol Chem 274(27), 18843–18846 (1999).

    Article  Google Scholar 

  6. L. Ameye, and M. F. Young, Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases, Glycobiology 12(9), 107R–116R (2002).

    Article  Google Scholar 

  7. P. Bianco, L. W. Fisher, M. F. Young, J. D. Termine, and P. G. Robey, Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues, J Histochem Cytochem 38(11), 1549–1563 (1990).

    Google Scholar 

  8. T. Xu, P. Bianco, L. W. Fisher, G. Longenecker, E. Smith, S. Goldstein, J. Bonadio, A. Boskey, A. M. Heegaard, B. Sommer, K. Satomura, P. Dominguez, C. Zhao, A. B. Kulkarni, P. G. Robey, and M. F. Young, Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice, Nat Genet 20(1), 78–82 (1998).

    Article  Google Scholar 

  9. X. D. Chen, S. Shi, T. Xu, P. G. Robey, and M. F. Young, Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells, J Bone Miner Res 17(2), 331–340 (2002).

    Article  Google Scholar 

  10. Y. Bi, C. H. Stuelten, T. Kilts, S. Wadhwa, R. V. Iozzo, P. G. Robey, X. D. Chen, and M. F. Young, Extracellular matrix proteoglycans control the fate of bone marrow stromal cells, J Biol Chem 280(34), 30481–30489 (2005).

    Article  Google Scholar 

  11. A. Hildebrand, M. Romaris, L. M. Rasmussen, D. Heinegard, D. R. Twardzik, W. A. Border, and E. Ruoslahti, Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta, Biochem J 302 (Pt 2), 527–534 (1994).

    Google Scholar 

  12. Y. Hayashi, C. Y. Liu, J. J. Jester, M. Hayashi, I. J. Wang, J. L. Funderburgh, S. Saika, P. J. Roughley, C. W. Kao, and W. W. Kao, Excess biglycan causes eyelid malformation by perturbing muscle development and TGF-alpha signaling, Dev Biol 277(1), 222–234 (2005).

    Article  Google Scholar 

  13. E. Tufvesson, and G. Westergren-Thorsson, Tumour necrosis factor-alpha interacts with biglycan and decorin, FEBS Lett 530(1–3), 124–128 (2002).

    Article  Google Scholar 

  14. X. D. Chen, L. W. Fisher, P. G. Robey, and M. F. Young, The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation, Faseb J 18(9), 948–958 (2004).

    Article  Google Scholar 

  15. M. Moreno, R. Munoz, F. Aroca, M. Labarca, E. Brandan, and J. Larrain, Biglycan is a new extracellular component of the Chordin-BMP4 signaling pathway, Embo J 24(7), 1397–1405 (2005).

    Article  Google Scholar 

  16. D. Parisuthiman, Y. Mochida, W. R. Duarte, and M. Yamauchi, Biglycan modulates osteoblast differentiation and matrix mineralization, J Bone Miner Res 20(10), 1878–1886 (2005).

    Article  Google Scholar 

  17. T. Imamura, M. Takase, A. Nishihara, E. Oeda, J. Hanai, M. Kawabata, and K. Miyazono, Smad6 inhibits signalling by the TGF-beta superfamily, Nature 389(6651), 622–626 (1997).

    Article  Google Scholar 

  18. T. Ebisawa, K. Tada, I. Kitajima, K. Tojo, T. K. Sampath, M. Kawabata, K. Miyazono, and T. Imamura, Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation, J Cell Sci 112 (Pt 20), 3519–3527 (1999).

    Google Scholar 

  19. A. Nishihara, T. Watabe, T. Imamura, and K. Miyazono, Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension, Mol Biol Cell 13(9), 3055–3063 (2002).

    Article  Google Scholar 

  20. K. J. Livak, and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25(4), 402–408 (2001).

    Article  Google Scholar 

  21. H. Itoh, M. Yamauchi, H. Kataoka, R. Hamasuna, N. Kitamura, and M. Koono, Genomic structure and chromosomal localization of the human hepatocyte growth factor activator inhibitor type 1 and 2 genes, Eur J Biochem 267(11), 3351–3359 (2000).

    Article  Google Scholar 

  22. T. Katagiri, A. Yamaguchi, M. Komaki, E. Abe, N. Takahashi, T. Ikeda, V. Rosen, J. M. Wozney, A. Fujisawa-Sehara, and T. Suda, Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage, J Cell Biol 127(6 Pt 1), 1755–1766 (1994).

    Article  Google Scholar 

  23. S. Maeda, M. Hayashi, S. Komiya, T. Imamura, and K. Miyazono, Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells, Embo J 23(3), 552–563 (2004).

    Article  Google Scholar 

  24. S. Harada, and G. A. Rodan, Control of osteoblast function and regulation of bone mass, Nature 423(6937), 349–355 (2003).

    Article  Google Scholar 

  25. L. A. Sabourin, and M. A. Rudnicki, The molecular regulation of myogenesis, Clin Genet 57(1), 16–25 (2000).

    Article  Google Scholar 

  26. J. M. Wozney, V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whitters, R. W. Kriz, R. M. Hewick, and E. A. Wang, Novel regulators of bone formation: molecular clones and activities, Science 242(4885), 1528–1534 (1988).

    Article  Google Scholar 

  27. T. Kirsch, W. Sebald, and M. K. Dreyer, Crystal structure of the BMP-2-BRIA ectodomain complex, Nat Struct Biol 7(6), 492–496 (2000).

    Article  Google Scholar 

  28. J. Garcia Abreu, C. Coffinier, J. Larrain, M. Oelgeschlager, and E. M. De Robertis, Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems, Gene 287(1–2), 39–47 (2002).

    Google Scholar 

  29. S. Hartwig, M. C. Hu, C. Cella, T. Piscione, J. Filmus, and N. D. Rosenblum, Glypican-3 modulates inhibitory Bmp2-Smad signaling to control renal development in vivo, Mech Dev 122(7–8), 928–938 (2005).

    Article  Google Scholar 

  30. T. A. Samad, A. Rebbapragada, E. Bell, Y. Zhang, Y. Sidis, S. J. Jeong, J. A. Campagna, S. Perusini, D. A. Fabrizio, A. L. Schneyer, H. Y. Lin, A. H. Brivanlou, L. Attisano, and C. J. Woolf, DRAGON, a bone morphogenetic protein co-receptor, J Biol Chem 280(14), 14122–14129 (2005).

    Article  Google Scholar 

  31. H. Nishitoh, H. Ichijo, M. Kimura, T. Matsumoto, F. Makishima, A. Yamaguchi, H. Yamashita, S. Enomoto, and K. Miyazono, Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5, J Biol Chem 271(35), 21345–21352 (1996).

    Article  Google Scholar 

  32. A. Nohe, S. Hassel, M. Ehrlich, F. Neubauer, W. Sebald, Y. I. Henis, and P. Knaus, The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways, J Biol Chem 277(7), 5330–5338 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Mochida, Y., Parisuthiman, D., Yamauchi, M. (2006). Biglycan Is a Positive Modulator of BMP-2 Induced Osteoblast Differentiation. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics