Skip to main content

Therapeutic Application of Transmembrane T and Natural Killer Cell Receptor Peptides

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 640))

Abstract

Autoimmune diseases primarily mediated by T-cells effect a significant proportion of the population and include common and distressing conditions such as diabetes, multiple sclerosis, inflammatory bowel disease, skin diseases and arthritis. Current treatments are restrictive in terms of range of options and side-effect profiles and new drugs and new approaches are always eagerly sought. With the T-cell antigen receptor (TCR) as a model system we have identified a new approach to inhibit T-cell activation. By means of peptides derived from the transmembrane TCR-alpha chain region we have shown that T-cells, the major effector cells of disease, can be inhibited in vitro and the immune responses leading to disease ameliorated in animal models.

The exact molecular mechanism of peptide action is still uncertain and assumed to involve a disturbance in transmembrane protein-protein interactions mediated by amino acid charges that disrupt normal signaling pathways. This chapter summarizes the results to date of TCR core peptide (CP); the most effective peptide noted so far, in terms of function, behavior in membranes and future development and application as a therapeutic agent. The lessons learned from this model can be applied to other multi-subunit receptors that serve critical cellular functions and open new doors for drug design, development and application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen-Kaminsky S, Jambou R Prospects for a T-cell receptor vaccination against myasthenia gravis. Expert Rev Vaccines 2005; 4(4):473–492.

    Article  PubMed  CAS  Google Scholar 

  2. Bluestone J, Tang Q. Therapeutic vaccination using CD4+ CD25+ antigen-specific regulatory T-cells. Proc Nad Acad Sci USA 2004; 101(Suppl 2): 14622–14626.

    Google Scholar 

  3. Kolier M. Targeted therapy in rheumatoid arthritis. Wiener Medizinische Wbchenschrift 2006; 156(1–2):53–60.

    Article  Google Scholar 

  4. Griffin M, Hoiman P, Tang Q et al. Development and applications of surface-linked single chain antibodies against T-cell antigens. J Immunol Methods 2001; 248(1–2):77–90.

    Article  PubMed  CAS  Google Scholar 

  5. Manolios N, Collier S, Taylor J et al. T-cell antigen receptor transmembrane peptides modulate T-cell function and T-cell-mediated disease. Nat Med 1997; 3:84–88.

    Article  PubMed  CAS  Google Scholar 

  6. Amon MA, Ali M, Bender V et al. Lipidation and glycosylation of a T-cell antigen receptor (TCR) transmembrane hydrophobic peptide dramatically enhances in vitro and in vivo function. Biochim Biophys Acta—Mol Cell Res 2006; 1763(8):879–888.

    Article  CAS  Google Scholar 

  7. Gollner GP, Muller G, Alt R et al. Therapeutic application of T-cell receptor mimic peptides or cDNA in the treatment of T-cell-mediated skin diseases. Gene Therapy 2000; 7:1000–1004.

    Article  PubMed  CAS  Google Scholar 

  8. Huynh NT. T-cell antigen receptor transmembrane peptides and their effects on B and Natural Killer Cells. Masters Thesis, University of Sydney, 2005.

    Google Scholar 

  9. Mahnke K, Qian Y, Knop J et al. Dendritic cells engineered to secrete a T-cell receptor mimic peptide, induce antigen-specific immunosuppression in vivo. Nat Biotech 2003; 21:903–908.

    Article  CAS  Google Scholar 

  10. Mozsolits H, Aguilar M-I. Surface Plasmon Resonance Spectroscopy: An emerging tool for the study of peptide-membrane interactions. Biopolymers (Peptide Science) 2002; 66:3–18.

    Article  CAS  Google Scholar 

  11. Shai Y. Mechanism of binding insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non selective membrane lytic peptides. Biochim Biophys Acta 1999; 1462:55–70.

    Article  PubMed  CAS  Google Scholar 

  12. Debet CM, Li SC. Peptides in membranes: Helicity and hydrophobicity. Biopolymers 1995; 37:295–318.

    Article  Google Scholar 

  13. White SH, Wimley WC. Peptides in lipid bilayers: Structural and thermodynamic basis for partitioning and folding. Curr Opin Struct Biol 1994; 4:79–86.

    Article  CAS  Google Scholar 

  14. Bender V, Ali M, Amon M et al. T-cell antigen receptor peptide-lipid membrane interactions using Surface Plasmon Resonance. J Biol Chem 2004; 279(52):54002–54007.

    Article  PubMed  CAS  Google Scholar 

  15. Ali M, De Planque M, Huynh N et al. Biophysical studies of transmembrane peptide derived from the T-cell antigen receptor. Lett Peptide Sci 2002; 8:227–233.

    Google Scholar 

  16. Wang X. Biological and biophysical properties of T-cell antigen receptor (TCR) transmembrane peptides in cell membranes. Masters Thesis Sydney, University of Sydney 2001.

    Google Scholar 

  17. Ali M, Salam NK, Amon MA et al. T-cell antigen receptor—Alpha chain transmembrane peptides: Correlation between structure and function. Int J Pept Res Ther 2006; 12:261–267.

    Article  CAS  Google Scholar 

  18. Wang XM, Djordjevic JT, Bender V et al. T-cell antigen receptor (TCR) transmembrane peptides colocalise with TCR, not lipid rafts, in surface membranes. Cell Immunol 2002; 215:12–19.

    Article  PubMed  CAS  Google Scholar 

  19. Wang XM, Djordjevic JT, Kurosaka N et al. T-cell antigen receptor peptides inhibit signal transduction within the membrane bilayer. Clin Immunol 2002; 105:199

    Article  PubMed  CAS  Google Scholar 

  20. Huynh NT, Ffrench RA, Boadle RA et al. Transmembrane TCR peptides inhibit B and NK cell function. Immunology 2003; 108(4):458–464.

    Article  PubMed  CAS  Google Scholar 

  21. Vandebona H, Ali M, Amon M et al. Immunoreceptor transmembrane peptides and their effect on Natural Killer (NK) cell cytotoxicity. Protein Pept Lett 2006; 13(10):1017–1024.

    Article  PubMed  CAS  Google Scholar 

  22. Call ME, Pyrdol J, Wiedmann M et al. The organizing principle in the formation of the T-cell receptor-CD3 complex. Cell 2002; 111:967–979.

    Article  PubMed  CAS  Google Scholar 

  23. Call ME, Wucherpfennig KW. The T-cell receptor: Critical role of the membrane environment in receptor assembly and function. Annu Rev Immunol 2005; 23:101–125.

    Article  PubMed  CAS  Google Scholar 

  24. Sigalov A. Multi-chain immune recognition receptors: Spatial organization and signal transduction. Semin Immunol 2005; 17:51–64.

    Article  PubMed  CAS  Google Scholar 

  25. Manolios N, Li ZG. The T-cell antigen receptor beta chain interacts with the extracellular domain of CD3-gamma. Immunol Cell Biol 1995; 73:532–536.

    Article  PubMed  CAS  Google Scholar 

  26. Wang J-h, Lim K, Smolyar A et al. Atomic structure of an αβ T-cell receptor (TCR) heterodimer in complex with an antiTCR Fab fragment derived from a mitogenic antibody. EMBO J 1998; 17(1):10–26.

    Article  PubMed  Google Scholar 

  27. Ghendler Y, Smolyar A, Chang H-C et al. One of the CD3ɛ Subunits within a T-cell receptor complex lies in close proximity to the Cβ FG loop. J Exp Med 1998; 187(9):1529–1536.

    Article  PubMed  CAS  Google Scholar 

  28. Ali M, Amon M, Bender V et al. Hydrophobic transmembrane-peptide lipid conjugations enhance membrane binding and functional activity in T-cells. Bioconjug Chem 2005; 16(6):1556–1563.

    Article  PubMed  CAS  Google Scholar 

  29. Kim J, Shishido T, Jiang X et al. Phosphorylation, high ionic strength and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J Biol Chem 1994; 269:28214–28219.

    PubMed  CAS  Google Scholar 

  30. Wells XE, Bender VJ, Francis CL et al. Tris and the ready production of drug-fatty acyl conjugates. Drug Dev Res 1999; 46(3–4):302–308.

    Article  CAS  Google Scholar 

  31. Blanchfield JT, Toth I. Modification of peptides and other drugs using lipoamino acids and sugars. Methods Mol Biol 2005; 298:45–61.

    PubMed  CAS  Google Scholar 

  32. Melnyk RA, Partridge AW, Yip J et al. Polar residue tagging of transmembrane peptides. Biopolymers (Peptide Science) 2003; 71:675–685.

    Article  CAS  Google Scholar 

  33. Collier S, Bolte A, Manolios N. Discrepancy in CD3-transmembrane peptide activity between in vitro and in vivo T-cell inhibition. Scand J Immunol 2006; 64(4):388–391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Manolios, N., Ali, M., Amon, M., Bender, V. (2008). Therapeutic Application of Transmembrane T and Natural Killer Cell Receptor Peptides. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_16

Download citation

Publish with us

Policies and ethics