Skip to main content

Formation and Differentiation of Avian Somite Derivatives

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 638))

Abstract

During somite maturation, the ventral half of the epithelial somite disintegrates into the mesenchymal sclerotome, whereas the dorsal half forms a transitory epithelial sheet, the dermomyotome, lying in between the sclerotome and the surface ectoderm. The dermomyotome is the source of the majority of the mesodermal tissues in the body, giving rise to cell types as different as muscle, connective tissue, endothelium and cartilage. Thus, the dermomyotome is the most important turntable of mesodermal cell fate choice in the vertebrate embryo. Sclerotome development is characterized by a cranio-caudal polarization, resegmentation and axial identity. Its formation is controlled by signals from the notochord, the neural tube, the lateral plate mesoderm and the myotome. These signals and cross-talk between somite cells lead to the separation of various subdomains, like the central, ventral, dorsal and lateral sclerotome. Here, we discuss the current knowledge on the formation of the dermomyotome and the mechanisms leading to the development of the various dermomyotomal derivatives, with special emphasis on the development of musculature and dermis. We further discuss the molecular control of sclerotomal subdomain formation and cell type specification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baer von KE. Entwickelungsgeschichte der Thiere. Beobachtung und Reflexion. Bornträger, Königsberg 1828.

    Google Scholar 

  2. Raff RA. Developmental mechanisms in the evolution of animal form: Origins and evolvability of body plans. In: Early life on earth. Columbia University Press, New York, 1994:489.

    Google Scholar 

  3. Balfour FM. Handbuch der vergleichenden Embryologie. 2. Band, Fischer Jena, 1881.

    Google Scholar 

  4. Remak R. Untersuchungen über die Entwickelung der Wirbelthiere. Reimer, Berlin, 1850.

    Google Scholar 

  5. Williams LW. The somites of the chick. Am J Anat 1910; 11:55–100.

    Article  Google Scholar 

  6. Christ B, Ordahl CP. Early stages of chick somite development. Anat Embryol 1995; 191:381–396.

    Article  PubMed  CAS  Google Scholar 

  7. Gossler A, Hrabe de Angelis M. Somitogenesis. Curr Top Dev Biol 1998; 38:225–287.

    Article  PubMed  CAS  Google Scholar 

  8. Christ B, Jacob HJ, Jacob M. Experimental analysis of somitogenesis in the chick embryo. Z Anat Entwickl-Gesch 1972; 138:82–97.

    Article  CAS  Google Scholar 

  9. Christ B, Schmidt C, Huang R et al. Segmentation of the vertebrate body. Anat Embryol 1998; 197:1–8.

    Article  PubMed  CAS  Google Scholar 

  10. Brand-Saberi B, Wilting J, Ebensperger C et al. The formation of somite compartments in the avian embryo. Int J Dev Biol 1996; 40:411–420.

    PubMed  CAS  Google Scholar 

  11. Brand-Saberi B, Christ B. Evolution and development of distinct lineages derived from somites. Curr Top Dev Biol 2000; 48:1–42.

    Article  PubMed  CAS  Google Scholar 

  12. Aoyama H, Asamoto K. Determination of somite cells: independence of cell differentiation and morphogenesis. Development 1988; 104:15–28.

    PubMed  CAS  Google Scholar 

  13. Christ B, Brand-Saberi B, Grim M et al. Local signalling in dermomyotomal cell type specification. Anat Embryol 1992; 186:505–510.

    Article  PubMed  CAS  Google Scholar 

  14. Aoyama H. Development plasticity of the prospective dermatome and the prospective sclerotome region of an avian somite. Dev Growth Differ 1993; 35:507–519.

    Article  Google Scholar 

  15. Ordahl CP, Le Douarin NM. Two myogenic lineages within the developing somite. Development 1992; 114:339–353.

    PubMed  CAS  Google Scholar 

  16. Brent AE, Tabin CJ. Development regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev 2002; 12:548–557.

    Article  PubMed  CAS  Google Scholar 

  17. Hatschek 1980, Cited after Williams LW. The somites of the chick. Am J Anat 1910; 11:55–100.

    Google Scholar 

  18. His W. Untersuchungen über die erste Anlage des Wirbelthierleibes. Die erst Entwicklung des Hühnchens im Ei. Vogel Leipzig 1868.

    Google Scholar 

  19. Linker C, Lesbros C, Gros J et al. beta-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 2005; 132:3895–3905.

    Article  PubMed  CAS  Google Scholar 

  20. Geetha-Loganathan P, Nimmagadda S, Huang R et al. Regulation of ectodermal Wnt6 expression by the neural tube is transduced by dermomyotomal Wnt 11: a mechanism of dermomyotomal lip sustainment. Development 2006; 133:2897–2904.

    Article  PubMed  CAS  Google Scholar 

  21. Ordahl CP, Berdougo E, Venters SJ et al. The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium. Development 2001; 128:1731–1744.

    PubMed  CAS  Google Scholar 

  22. Venters SJ, Ordahl CP. Persistent myogenic capacity of the dermomyotome dorsomedial lip and restriction of myogenic competence. Development 2002; 129:3873.

    PubMed  CAS  Google Scholar 

  23. Dhoot GK, Gustafsson MK, Ai X et al. Regulation of Wnt signaling and embryo pattering by an extracellular sulfatase Science 2001; 293:1663–1666.

    Article  PubMed  CAS  Google Scholar 

  24. Lee CS, Buttitta LA, May NR et al. SHH-N upregulates Sfrp2 to mediate its competitive interaction with WNT1 and WNT4 in the somitic mesoderm. Development 2000; 127:109–118.

    PubMed  CAS  Google Scholar 

  25. Lee CS, Buttitta L, Fan CM. Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc Natl Acad Sci USA 2001; 98:11347–11352.

    Article  PubMed  CAS  Google Scholar 

  26. Spence MS, Yip J, Erickson CA. The dorsal neural tube organizes the dermamyotome and induces axial myocytes in the avian embryo. Development 1996; 122:231–241.

    PubMed  CAS  Google Scholar 

  27. Dietrich S, Schubert FR, Lumsden A. Control of dorsoventral pattern in the chick paraxial mesoderm. Development 1997; 124:3895–3908.

    PubMed  CAS  Google Scholar 

  28. Fan CM, Lee CS, Tessier-Lavigne M. A role for WNT proteins in induction of dermomyotome. Dev Biol 1997; 191:160–165.

    Article  PubMed  CAS  Google Scholar 

  29. Capdevila J, Tabin C, Johnson RL. Control of dorsoventral somite patterning by Wnt-1 and beta-catenin. Dev Biol 1998; 193:182–194.

    Article  PubMed  CAS  Google Scholar 

  30. Ikeya M, Takada S. Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 1998; 125:4969–4976.

    PubMed  CAS  Google Scholar 

  31. Wagner J, Schmidt C, Nikowits W Jr et al. Compartmentalization of the somite and myogenesis in chick embryos are influenced by wnt expression. Dev Biol 2000; 228:86–94.

    Article  PubMed  CAS  Google Scholar 

  32. Fan CM, Tessier-Lavigne M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 1994; 79: 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  33. Galli LM, Willert K, Nusse R et al. A proliferative role for Wnt-3a in chick somites. Dev Biol 2004; 269:489–504.

    Article  PubMed  CAS  Google Scholar 

  34. Ben-Yair R, Kahane N, Kalcheim C. Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite. Development 2003; 130:4325–4336.

    Article  PubMed  CAS  Google Scholar 

  35. Ahmed MU, Cheng L, Dietrich S. Establishment of the epaxial-hypaxial boundary in the avian myotome. Dev Dyn 2006; 235:1884–1894.

    Article  PubMed  Google Scholar 

  36. Scaal M, Wiegreffe C. Somite compartments in anamniotes. Anat Embryol 2006; (Berl) Epub 2006 Sep 28.

    Google Scholar 

  37. Brennan C, Amacher SL, Currie PD. Somitogenesis. Results Probl Cell Differ 2002; 40:271–297.

    PubMed  CAS  Google Scholar 

  38. Krenn V, Gorka P, Wachtler F et al. On the origin of cells determined to form skeletal muscle in avian embryos. Anat Embryol 1988; 179:49–54.

    Article  PubMed  CAS  Google Scholar 

  39. Nicolas JF, Mathis L, Bonnerot C et al. Evidence in the mouse for self-renewing stem cells in the formation of a segmented longitudinal structure, the myotome. Development 1996; 122:2933–2946.

    PubMed  CAS  Google Scholar 

  40. Selleck MA, Stern CD. Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 1991; 112:615–626.

    PubMed  CAS  Google Scholar 

  41. Psychoyos D, Stern CD. fates and migratory routes of primitive streak cells in the chick embryo. Development 1996; 122:1523–1534.

    PubMed  CAS  Google Scholar 

  42. Eloy-Trinquet S, Mathis L, Nicolas JF. Retrospective tracing of the developmental lineage of the mouse myotome. Curr Top Dev Biol 2000; 47:33–80.

    Article  PubMed  CAS  Google Scholar 

  43. George-Weinstein M, Gerhart J, Reed R. Skeletal myogenesis: the preferred pathway of chick embryo epiblast cells in vitro. Dev Biol 1996; 173:279–291.

    Article  PubMed  CAS  Google Scholar 

  44. Holtzer H, Schultheiss T, Dilullo C. Autonomous expression of the differentiation programs of cells in the cardiac and skeletal myogenic lineages. Ann NY Acad Sci 1990; 599:158–169.

    Article  PubMed  CAS  Google Scholar 

  45. Fomenou MD, Scaal M, Stockdale FE et al. Cells of all somitic compartments are determined with respect to segmental identity. Dev Dyn 2005; 233:1386–1393.

    Article  PubMed  Google Scholar 

  46. Rong PM, Teillet MA, Ziller C et al. The neural tube/notochord complex is necessary for vertebral but not limb and body wall striated muscle differentiation. Development 1992; 115:657–672.

    PubMed  CAS  Google Scholar 

  47. Borman WH, Yorde DE. Barrier inhibition of a temporal neuraxial influence on early chick somitic myogenesis. Dev Dyn 1994; 200:68–78.

    PubMed  CAS  Google Scholar 

  48. Buffinger N, Stockdale FE. Myogenic specification in somites: induction by axial structures. Development 1994; 120:1443–1452.

    PubMed  CAS  Google Scholar 

  49. Stern HM, Brown AM, Hauschka SD. Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1. Development 1995; 121:3675–3686.

    PubMed  CAS  Google Scholar 

  50. Cossu G, Kelly R, Tajbakhsh S et al. Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm Development 1996; 122:429–437

    PubMed  CAS  Google Scholar 

  51. Stern HM, Hauschka SD. Neural tube and notochord promote in vitro myogenesis in single somite explants. Dev Biol 1995; 167:87–103.

    Article  PubMed  CAS  Google Scholar 

  52. Münsterberg AE, Kitajewski J, Bumcrot DA et al. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite., Genes Dev 1995; 9:2911–2922.

    Article  PubMed  Google Scholar 

  53. Münsterberg AE, Lassar AB. Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite. Development 1995; 121:651–660.

    PubMed  Google Scholar 

  54. Gustafsson MK, Pan H, Pinney DF et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 2002; 16: 114–126.

    Article  PubMed  CAS  Google Scholar 

  55. Teboul L, Hadchouel J, Daubas P et al. The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis. Development 2002; 129:4571–4580.

    PubMed  CAS  Google Scholar 

  56. Chiang C, Litingtung Y, Lee E. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407–413.

    Article  PubMed  CAS  Google Scholar 

  57. Duprez D, Fournier-Thibault C, Le Douarin N. Sonic hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 1998; 125:495–505.

    PubMed  CAS  Google Scholar 

  58. Teillet M, Watanabe Y, Jeffs P et al. Somic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 1998; 125:2019–2030.

    PubMed  CAS  Google Scholar 

  59. Marcelle C, Ahlgren S, Bronner-Fraser M. In vivo regulation of somite differentiation and proliferation by Sonic Hedgehog. Dev Biol 1999; 214:277–287

    Article  PubMed  CAS  Google Scholar 

  60. Marcelle C, Stark MR, Bronner-Fraser M. Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development 1997; 124:3955–3963.

    PubMed  CAS  Google Scholar 

  61. Linker C, Lesbros C, Stark MR et al. Intrinsic signals regulate the initial steps of myogenesis in vertebrates. Development 2003; 130:4797–4807.

    Article  PubMed  CAS  Google Scholar 

  62. Rudnicki MA, Schnegelsberg PN, Stead RH et al. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 1993; 75:1351–1359.

    Article  PubMed  CAS  Google Scholar 

  63. Maroto M, Reshef R, Munsterberg AE et al. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 1997; 89:139–148.

    Article  PubMed  CAS  Google Scholar 

  64. Tajbakhsh S, Rocancourt D, Cossu G et al. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 1997; 89:127–138.

    Article  PubMed  CAS  Google Scholar 

  65. Pourquie O, Fan CM, Coltey M et al. Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 1996; 84:461–471.

    Article  PubMed  CAS  Google Scholar 

  66. Ott MO, Bober E, Lyons G et al. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 1991; 111:1097–1107.

    PubMed  CAS  Google Scholar 

  67. Pownall ME, Emerson CP Jr. Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol 1992; 151:67–79.

    Article  PubMed  CAS  Google Scholar 

  68. Reshef R, Maroto M, Lassar AB. Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev 1998; 12:290–303.

    Article  PubMed  CAS  Google Scholar 

  69. Christ B, Jacob HJ, Jacob M. Regional determination of early embryonic muscle primordium. Experimental studies on quail and chick embryos. Verh Anat Ges 1978; 353–357.

    Google Scholar 

  70. Bardeen BI. The development of the musculature in the body wall in the pig. Johns Hopkins Hospital Report 1900; 9:367.

    Google Scholar 

  71. Hamilton HL. Lillie’s development of the chick. An introduction to embryology. Holt, Rinehart and Winston New York. 1952

    Google Scholar 

  72. Boyd ID. Development of the striated muscle. In: Bourne GH (ed) Structure and Function of Muscle. Academic Press New York. 1960

    Google Scholar 

  73. Mestres P, Hinrichsen K. The histogenesis of somites in the chick. J Embryol Exp Morphol 1976; 36:669.

    Google Scholar 

  74. Kahane N, Cinnamon Y, Kalcheim C. The cellular mechanism by which the dermomyotome contributes to the second wave of myotomedevelopment. Development 1998; 125:4259–4271.

    PubMed  CAS  Google Scholar 

  75. Kahane N, Cinnamon Y, Kalcheim C. The origin and fate of pioncer myotomal cells in the avian embryo. Mech Dev 1998; 74:59–73.

    Article  PubMed  CAS  Google Scholar 

  76. Cinnamon Y, Kahane N, Kalcheim C. Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development 1999; 126:4305–4315.

    PubMed  CAS  Google Scholar 

  77. Cinnamon Y, Kahane N, Bachelet I et al. The sublip domain—a distinct pathway for myotome precursors that demonstrate rostral-caudal migration. Development 2001; 128:341–351.

    PubMed  CAS  Google Scholar 

  78. Kahane N, Cinnamon Y, Bachelet I et al. Teh third wave of myotome colonization by mitotically competent progenitors: regulating the balance between differentiation and proliferation during muscle development. Development 2001; 128:2187–2198.

    PubMed  CAS  Google Scholar 

  79. Kahane N, Cinnamon Y, Kalcheim C. The roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome. Development 2002; 129:2675–2687.

    PubMed  CAS  Google Scholar 

  80. Denetclaw WF Jr, Christ B, Ordahl C.P. Location and growth of epaxial myotome precursor cells. Development 1997; 124:1601–1610.

    PubMed  CAS  Google Scholar 

  81. Denetclaw WF, Ordahl CP. The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somite of chicken embryos. Development 2000; 127:893–905.

    PubMed  CAS  Google Scholar 

  82. Denetclaw WF Jr, Berdougo E, Venters SJ et al. Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip asociated with patterning and growth of the primary epaxial myotome. Development 2001; 128:1745–1755.

    PubMed  CAS  Google Scholar 

  83. Scaal M, Gros J, Lesbros C et al. In ovo electroporation of avian somites. Dev Dyn 2004; 229:643–650.

    Article  PubMed  CAS  Google Scholar 

  84. Gros J, Scaal M, Marcelle C. A two-step mechsnism for myotome formation in chick. Dev Cell 2004; 6:875–882.

    Article  PubMed  CAS  Google Scholar 

  85. Venters SJ, Ordahl CP. Asymmetric cell divisions are concentrated in the dermomyotome dorsomedial lip during epaxial primary myotome morphogenesis. Anat Embryol 2005; 209:449–460.

    Article  PubMed  Google Scholar 

  86. Cinnamon Y, Ben-Yair R, Kalcheim C. Differential effects of N-cadherin-mediated adhesion on the development of myotomal waves. Development 2006; 133:1101–1112.

    Article  PubMed  CAS  Google Scholar 

  87. Ben-Yair R, Kalcheim C. Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 2005; 132:689–701.

    Article  PubMed  CAS  Google Scholar 

  88. Marcelle C, Eichmann A, Halevy O et al. Distinct developmental expression of a new avian fibroblast growth factor receptor. Development 1994; 120:683–694.

    PubMed  CAS  Google Scholar 

  89. Marcelle C, Wolf J, Bronner-Fraser M. The in vivo expression of the FGF receptor FREK mRNA in avian myoblasts suggests a role in muscle growth and differentiation. Dev Biol 1995; 172:100–114.

    Article  PubMed  CAS  Google Scholar 

  90. Gros J, Manceau M, Thome V et al. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 2005; 435:954–958.

    Article  PubMed  CAS  Google Scholar 

  91. Wilson-Rawls J, Hurt CR, Parsons SM et al. Differential regulation of epaxial and hypaxial muscle development by paraxis. Development 1999; 126:5217–5229.

    PubMed  CAS  Google Scholar 

  92. Christ B, Jacob HJ, Jacob M. Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia 1974; 30:1446–1449.

    Article  PubMed  CAS  Google Scholar 

  93. Christ B, Jacob HJ, Jacob M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 1977; 150:171–186.

    Article  PubMed  CAS  Google Scholar 

  94. Fischel A. Zur Entwicklung der vertebralen Rumpf-und der Extremitätenmuskulatur der Vögel und Säugetiere. Morphol Jahrb 1895; 23:544.

    Google Scholar 

  95. Murray PDF. Chorio-allantoic grafts of fragments of the two-day-chick, with special reference to the development of the limbs, intestine and skin. J Exp Biol Med Sc 1928; 5:237–256.

    Article  Google Scholar 

  96. Grim M. Differentiation of myoblasts and the relationship between somites and the wing bud of the chick embryo. Z Anat Entwicklungsgesch 1970; 132:260.

    Article  PubMed  CAS  Google Scholar 

  97. Glücksmann A. Über die Entwicklung der Amniotenextremitäten und ihre Homologie mit den Flossen. Z Anat Entwicklgesch 1934; 102:498–533.

    Article  Google Scholar 

  98. Saunders J.W. Do the somites contribute to the formation of the chick wing? Anat Rec 1948; 100:756.

    Google Scholar 

  99. Pinot M. The role of somitic mesoderm in the early morphogenesis of the limbs in the fowl embryo. J Embryol Exp Morphol 1970; 23:109.

    PubMed  CAS  Google Scholar 

  100. Brand-Saberi B, Muller TS, Wilting J et al. Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev Biol 1996; 179:303–308.

    Article  PubMed  CAS  Google Scholar 

  101. Schmidt C, Bladt F, Goedecke S et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995; 373:699–702.

    Article  PubMed  CAS  Google Scholar 

  102. Bladt F, Riethmacher D, Isenmann S et al. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995; 376:768–771.

    Article  PubMed  CAS  Google Scholar 

  103. Epstein JA, Shapiro DN, Cheng J et al. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 1996; 93:4213–4218.

    Article  PubMed  CAS  Google Scholar 

  104. Schäfer K, Braun T. Early specification of limb muscle precursor cells by the homeobox gene Lbx1. Nat Genet 1999; 23:213–216.

    Article  PubMed  Google Scholar 

  105. Song K, Wang Y, Sassoon D. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 1992; 360:477–481.

    Article  PubMed  CAS  Google Scholar 

  106. Davidson D. The function and evolution of Msx genes: pointers and paradoxes. Trends Genet 1995; 11:405–411.

    Article  PubMed  CAS  Google Scholar 

  107. Houzelstein D, Auda-Boucher G, Cheraud Y et al. The homeobox gene Msx1 is expressed in a subset of somites and in muscle progenitor cells migrating into the forelimb. Development 1999; 126:2689–2701.

    PubMed  CAS  Google Scholar 

  108. Goulding M, Lumsden A, Paquette AJ. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 1994; 120:957–971.

    PubMed  CAS  Google Scholar 

  109. Anakwe K, Robson L, Hadley J. Wnt signaling regulates myogenic differentiation in the developing avian wing. Development 2003; 130:3503–3514.

    Article  PubMed  CAS  Google Scholar 

  110. Scaal M, Bonafede A, Dathe V et al. SF/HGF is a mediator between limb patterning and muscle development. Development 1999; 126:4885–4893.

    PubMed  CAS  Google Scholar 

  111. Dietrich S, Abou-Rebyeh F. Brohmann H. The role of SF/HGF and c-Met in the development of skeletal muscle. Development 1999; 126:1621–1629.

    PubMed  CAS  Google Scholar 

  112. Marics I, Padilla F, Guillemot JF et al. FGFR4 signaling is a neccessary step in limb muscle differentiation. Development 2002; 129:4559–4569.

    PubMed  CAS  Google Scholar 

  113. Tajbakhsh S, Buckingham ME. Mouse limb muscle is determined in the absence of the earliest myogenic factor myf-5. Proc Natl Acad Sci USA 1994; 91:747–751.

    Article  PubMed  CAS  Google Scholar 

  114. Geetha-Loganathan P, Nimmagadda S, Pröls F et al. Two different pathways during limb myogenesis. Verh Ant Ges 2005; 100:20.

    Google Scholar 

  115. Geetha-Loganathan P, Nimmagadda S, Pröls F et al. Ectodermal Wnt-6 promotes Myf5-dependent avian limb myogenesis. Dev Biol 2005; 288:221–233.

    Article  PubMed  CAS  Google Scholar 

  116. Buckingham M, Bajard L, Chang T et al. The formation of skeletal muscle: from somite to limb. J Anat 2003; 202:59–68.

    Article  PubMed  Google Scholar 

  117. Schemainda H. Experimentelle Untersuchungen zur Entwicklung der Zungenmuskulatur beim Hühnerembryo. Verh Anat Ges 1981; 75:501.

    Google Scholar 

  118. Huang R, Zhi Q, Izpisua-Belmonte JC et al. Origin and development of the avian tongue muscles. Anat Embryol 1999; 200:137–152.

    Article  PubMed  CAS  Google Scholar 

  119. Huang R, Lang ER, Otto WR et al. Molecular and cellular analysis of embryonic avian tongue development. Anat Embryol 2001; 204:179–187.

    Article  PubMed  CAS  Google Scholar 

  120. Reichert CB. Das Entwickelungsleben im Wirbelthierreich. 1838.

    Google Scholar 

  121. Kölliker A. Entwicklungsgeschichte des Menschen und der höheren Thiere. 1879; Engelmann, Leipzig.

    Google Scholar 

  122. Goette A. Entwickelungsgeschichte der Unke (Bombinator igneus) als Grundlage einer vergleichenden Morphologie der Wirbelthiere. 1875; Leopold Voss, Leipzig.

    Google Scholar 

  123. Minot CS. Human Embryology. 1892; Wood and Co, New York.

    Google Scholar 

  124. Murray PDF. The origin of the dermis. Nature 1928; 122:609.

    Article  Google Scholar 

  125. Le Douarin NM. Particularites du noyau interphasique chez la caille japonaise (Coturnix c. Japonica). Utilisation de ses particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrations cellulairs au cours de ľontogenèse. Bull Biol Fr Bel 1969; 103:435–452.

    Google Scholar 

  126. Le Douarin NM. A biological cell labeling technique and its use in experimental embryology. Dev Biol 1973; 30:217–222.

    Article  PubMed  Google Scholar 

  127. Mauger A. The role of somitic mesoderm in the development of dorsal plumage in chick embryos. I. Origin, regulative capacity and determination of the plumage-forming mesoderm. J Embryol Exp Morphol 1972; 28:313–341.

    PubMed  CAS  Google Scholar 

  128. Christ B, Jacob M, Jacob HJ. On the origin and development of the ventrolateral abdominal muscles in the avian embryo. An experimental and ultrastructural study. Anat Embryol 1983; 166:87–101.

    Article  PubMed  CAS  Google Scholar 

  129. Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: analysis of chimacric quail and chick embryos. J Embryol exp Morph 1975; 34:125–154.

    PubMed  Google Scholar 

  130. Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissues. Dev Biol 1983; 96:144–165.

    Article  PubMed  CAS  Google Scholar 

  131. Couly GF, Coltey PM, Le Douarin NM. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 1992; 114:1–15.

    PubMed  CAS  Google Scholar 

  132. Olivera-Martinez I, Coltey M, Dhouailly D et al. Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development 2000; 127:4611–4617.

    PubMed  CAS  Google Scholar 

  133. Olivera-Martinez I, Thelu J, Teillet MA et al. Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. Mech Dev 2001; 100:233–244.

    Article  PubMed  CAS  Google Scholar 

  134. Atit R, Sgaier SK, Mohamed OA et al. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296:164–176.

    Article  PubMed  CAS  Google Scholar 

  135. Sengel P. Morphogenesis of skin. Cambridge University Press, Cambridge. 1976.

    Google Scholar 

  136. Brill G, Kahane N, Carmeli C et al. Epithelial-mesenchymal conversion of dermatome progenitors requires neural tube-derived signals: characterization of the role of neutrophin-3. Development 1995; 121:2583–2594.

    PubMed  CAS  Google Scholar 

  137. Marcelle C, Lesbros C, Linker C. Somite patterning: a few more pieces of the puzzle. Results Probl Cell Differ 2002; 38:81–108.

    PubMed  Google Scholar 

  138. Houzelstein D, Cheraud Y, Auda-Boucher G et al. The expression of the homeobox gene Msx1 reveals two populations of dermal progenitor cells originating from the somites. Development 2000; 127:2155–2164.

    PubMed  CAS  Google Scholar 

  139. Buchner G, Broccoli V, Bulfone A et al. MAEG, an EGF-repeat containing gene, is a new marker associated with dermatome specification and morphogenesis of its derivatives. Mech Dev 2000; 98:179–182.

    Article  PubMed  CAS  Google Scholar 

  140. Olivera-Martinez I, Missier S, Fraboulet S et al. Differential regulation of the chick dorsal thoracic dermal progenitors from the medial dermomyotome. Development 2002; 129:4763–4772.

    PubMed  CAS  Google Scholar 

  141. Duong TD, Erickson CA. MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn 2004; 229:42–53.

    Article  PubMed  CAS  Google Scholar 

  142. Christ B, Huang R, Wilting J. The development of the avian vertebral column. Anat Embryol 2000; 202:179–194.

    Article  PubMed  CAS  Google Scholar 

  143. Sorrell JM, Caplan AI. Fibroblast heterogeneity: more than skin deep. J Cell Sci 2004; 117:667–675.

    Article  PubMed  CAS  Google Scholar 

  144. Wessells NK. Morphology and proliferation during early feather development. Dev Biol 1965; 12:131–153.

    Article  PubMed  CAS  Google Scholar 

  145. Li L, Cserjesi P, Olson EN. Dermo-1; a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol 1995; 172:280–292.

    Article  PubMed  CAS  Google Scholar 

  146. Scaal M, Füchtbauer EM, Brand-Saberi B. Cdermo-1 expression indicates a role in avian skin development. Anat Embryol 2001; 203:1–7.

    Article  PubMed  CAS  Google Scholar 

  147. Scaal M, Pröls F, Füchtbauer EM et al. BMPs induce dermal markers and ectopic feather tracts. Mech Dev 2002; 110:51–60.

    Article  PubMed  CAS  Google Scholar 

  148. Sengel P. Pattern formation in skin development. Int J Dev Biol 1990; 34:33–50.

    PubMed  CAS  Google Scholar 

  149. Dhouailly D. Dermo-epidermal interactions during morphogenesis of cutaneous appendages in amniotes. Front Matrix Biol 1977; 4:86–121.

    CAS  Google Scholar 

  150. Chuong CM. Molecular Basis of Epithelial Appendage Morphogenesis. R.G. Landes Company, Austin, TX. 1998.

    Google Scholar 

  151. Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol 2003; 262:195–205.

    Article  PubMed  CAS  Google Scholar 

  152. Wilting J, Christ B, Yuan L et al. Cellular and molecular mechanisms of embryonic haemangiogenesis and lymphangiogenesis. Naturwissenschaften 2003; 90:433–448.

    Article  PubMed  CAS  Google Scholar 

  153. Wilting J, Brand-Saberi B, Kurz H et al. Development of the embryonic vascular system. Cell Mol Biol Res 1995; 41:219–232.

    PubMed  CAS  Google Scholar 

  154. Pardanaud L, Luton D, Prigent M et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 1996; 122:1363–1371.

    PubMed  CAS  Google Scholar 

  155. Kardon G, Campbell JK, Tabin CJ. Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell 2002; 3:533–545.

    Article  PubMed  CAS  Google Scholar 

  156. He L, Papoutsi M, Huang R et al. Three different fates of cells migrating from somites into the limb bud. Anat Embryol 2003; 207:29–34.

    Article  PubMed  Google Scholar 

  157. Huang R, Zhi Q, Patel K et al. Dual origin and segmental organisation of the avian scapula. Development 2000; 127:3789–3794.

    PubMed  CAS  Google Scholar 

  158. Wang B, He L, Ehehalt F et al. The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 2005; 287:11–18.

    Article  PubMed  CAS  Google Scholar 

  159. Tajbakhsh S, Rocancourt D, Buckingham M. Muscle progenitor cells failing to respond to positional cues adopt nonmyogenic fates in myf-5 null mice. Nature 1996; 384:266–270.

    Article  PubMed  CAS  Google Scholar 

  160. Solursh M, Fischer M, Meier S et al. The role of extracellular matrix in the formation of the sclerotome. J Embryol exp Morph 1979; 54:75–98.

    PubMed  CAS  Google Scholar 

  161. Trelstad RL. Mesenchymal cell polarity and morphogenesis of chick cartilage. Dev Biol 1977; 59:153–163.

    Article  PubMed  CAS  Google Scholar 

  162. Hirano S, Hirako R, Kajita N et al. Morphological analysis of the role of the neural tube and notochord in the development of somites. Anat Embryol 1995; 192:445–457.

    Article  PubMed  CAS  Google Scholar 

  163. Burgess R, Rawls A, Brown D et al. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 1996; 384:570–573.

    Article  PubMed  CAS  Google Scholar 

  164. Barnes GL, Alexander PG, Hsu CW et al. Cloning and characterization of chicken Paraxis: a regulator of paraxial mesoderm development and somite formation. Dev Biol 1997; 189:95–111.

    Article  PubMed  CAS  Google Scholar 

  165. Ostrovsky D, Sanger JW, Lash JW. Somitogenesis in the mouse embryo. Cell Differ 1988; 23:17–26.

    Article  PubMed  CAS  Google Scholar 

  166. Hatta K, Takagi S, Hajime F et al. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 1987; 120:215–227.

    Article  PubMed  CAS  Google Scholar 

  167. Duband J.-L, Dufour S, Hatta K et al. Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 1987; 104:1361.

    Article  PubMed  CAS  Google Scholar 

  168. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 1988; 102:630–655.

    Google Scholar 

  169. Dietrich S, Schubert FR, Gruss P et al. Altered Pax gene expression in mouse notochord mutants: the notochord is required to initiate and maintain ventral identity in the somite. Mech Dev 1993; 44:189–207.

    Article  PubMed  CAS  Google Scholar 

  170. Koseki H, Wallin J, Wilting J et al. A role of Pax-1 as a mediator of notochordal signals during the dorso-ventral specification of vertebrae. Development 1993; 119:649–660.

    PubMed  CAS  Google Scholar 

  171. Peters H, Doll U, Niessing J. Differential expression of the chicken Pax-1 and Pax-9 gene. In situ hybridization and immunohistochemical analysis. Dev Dyn 1995; 203:1–16.

    PubMed  CAS  Google Scholar 

  172. Walther C, Guenet J.-L, Simon D et al. Pax: A murine multigene family of paired box containing genes. Genomics 1991; 11:424–434.

    PubMed  CAS  Google Scholar 

  173. Noll M. Evolution and role of Pax genes. Curr Opin Genet Dev 1993; 3:595–605.

    Article  PubMed  CAS  Google Scholar 

  174. Deutsch U, Dressler GR, Gruss P. Pax 1, a member of paired box homologous murine gene family, is expressed in segmented structures during development. Cell 1988; 53:617–626.

    Article  PubMed  CAS  Google Scholar 

  175. Ebensperger C, Wilting J, Brand-Saberi B et al. Pax-1, a regulator of sclerotome development is induced by notochord and floor plate signals in avian embryos. Anat Embryol 1995; 191:297–310.

    Article  PubMed  CAS  Google Scholar 

  176. Borycki AG, Strunk K, Savary R et al. Distinct signal/response mechanisms regulate pax 1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites. Dev Biol 1997; 185:185–200.

    Article  PubMed  CAS  Google Scholar 

  177. Balling R, Neubüser A, Christ B. Pax genes and sclerotome development. Semin Cell Dev Biol 1996; 7:129–136.

    Article  Google Scholar 

  178. Müller TS, Ebensperger C, Neubüser A et al. Expression of avian Pax-1 and Pax-9 in the sclerotome is controlled by axial and lateral tissues, but intrinsically regulated in pharyngeal endoderm. Dev Biol 1996; 178:403–417.

    Article  PubMed  Google Scholar 

  179. Borycki AG, Mendham L, Emerson CP Jr. Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development 1998; 125:777–790.

    PubMed  CAS  Google Scholar 

  180. Buttitta L, Mo R, Hui CC et al. Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 2003; 130:6233–6243.

    Article  PubMed  CAS  Google Scholar 

  181. Johnson RL, Läufer E, Riddle RD et al. Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 1994; 79:1165–1173.

    Article  PubMed  Google Scholar 

  182. Fan C.-M, Porter JA, Chiang C et al. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal claevage product and modulation by the cyclic AMP signaling pathway. Cell 1995; 81:457–465.

    Article  PubMed  CAS  Google Scholar 

  183. Marti E, Takada R, Bumcrot DA et al. Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 1995; 121:2537–2547.

    PubMed  CAS  Google Scholar 

  184. McMahon JA, Takada S, Zimmermann LB et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 1998; 12:1438–1452.

    Article  PubMed  CAS  Google Scholar 

  185. Dockter JL. Sclerotome induction and differentiation. In: Somitogenesis, Part 2, (Ordahl CP. ed.) Academic Press, London, 2000; New York, 77.

    Google Scholar 

  186. Hoang BH, Thomas JT, Abdul-Karim FW et al. Expression pattern of two Frizzled-related genes, Frzb-1 and Sfrp-1 during mouse embryogenesis suggests a role for modulating action of Wnt family members. Dev Dyn 1998; 212:364–374.

    Article  PubMed  CAS  Google Scholar 

  187. Cauthen CA, Berdougo E, Sandler J et al. Comparative analysis of the expression patterns of Wnts and Frizzleds during early myogenesis in chick embryos. Mech Dev 2001; 104:133–138.

    Article  PubMed  CAS  Google Scholar 

  188. Schubert FR, Mootoosamy RC, Walters EH et al. Wnt6 marks sites of epithelial transformations in the chick embryo. Mech Dev 2002; 114:143–148.

    Article  PubMed  CAS  Google Scholar 

  189. Rodriguez-Niedenführ M, Dathe V, Jacob HJ et al. Spatial and temporal pattern of Wnt-6 expression during chick development. Anat Embryol 2003; 206:447–451.

    PubMed  Google Scholar 

  190. Brand-Saberi B, Ebensperger C, Wilting J et al. The ventralizing effect of the notochord on somite differentiation in chick embryos. Anat Embryol 1993; 188:239–245.

    Article  PubMed  CAS  Google Scholar 

  191. Wheelock M, Knudsen K. N-cadherin-associated proteins in chicken muscle. Differentiation 1991; 46:35–42.

    Article  PubMed  CAS  Google Scholar 

  192. Schmidt C, Stoeckelhuber M, McKinnell I et al. Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation. Dev Biol 2004; 271:198–209.

    Article  PubMed  CAS  Google Scholar 

  193. Hirsinger E, Duprez D, Jouve C et al. Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 1997; 124:4605–4614.

    PubMed  CAS  Google Scholar 

  194. Amthor H, Conolly D, Patel K et al. The expression and regulation of follistatin and a follistatin-like gene (flik) during avian somite compartmentalization and myogenesis. Dev Biol 1996; 178:343–362.

    Article  PubMed  CAS  Google Scholar 

  195. Wilting J, Kurz H, Brand-Saberi B et al. Kinetics and differentiation of somite cells forming the vertebral column: studies on human and chick embryos. Anat Embryol 1994; 190:573–581.

    Article  PubMed  CAS  Google Scholar 

  196. Wilting J, Ebensperger C, Müller TS et al. Pax-1 in the development of the cervico-occipital transitional zone. Anat Embryol 1995; 192:221–227.

    Article  PubMed  CAS  Google Scholar 

  197. Huang R, Stolte D, Kurz H et al. Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development. Dev Biol 2003; 255:30–47.

    Article  PubMed  CAS  Google Scholar 

  198. Stolte D, Huang R, Christ B. Spatial and temporal pattern of Fgf-8 expression during chicken development. Anat Embryol 2002; 205:1–6.

    Article  PubMed  CAS  Google Scholar 

  199. Teillet M.-A, Watanabe Y, Jeffs P et al. Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 1998; 125:2019–2030.

    PubMed  CAS  Google Scholar 

  200. Hebrok M, Wertz K, Füchtbauer EM. M-twist is an inhibitor of muscle differentiation. Dev Biol 1994; 165:537–544.

    Article  PubMed  CAS  Google Scholar 

  201. Füchtbauer E.-M. Expression of m-twist during post-implantation development of the mouse. Dev Dyn 1995; 204:316–322.

    PubMed  Google Scholar 

  202. Spicer DB, Rhee J, Cheung WL et al. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein twist. Science 1996; 272:476–1480.

    Article  Google Scholar 

  203. Bialek P, Kern B, Yang X et al. A twist code determines the onset of osteoblast differentiation. Dev Cell 2004; 6:423–435.

    Article  PubMed  CAS  Google Scholar 

  204. Hornik C, Brand-Saberi B, Rudloff S et al. TWIST is an integrator of Shh, FGF and BMP signaling. Anat Embryol 2004; 209:31–39.

    Article  PubMed  CAS  Google Scholar 

  205. Furumoto TA, Miura N, Akasaka T et al. Notochord-dependent expression of MFH1 and Pax1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Dev Biol 1999; 210:15–29.

    Article  PubMed  CAS  Google Scholar 

  206. Sanders EJ. Cell death in the avian sclerotome. Dev Biol 1997; 192:551–563.

    Article  PubMed  CAS  Google Scholar 

  207. Huang R, Zhi Q, Wilting J. The fate of somitocoele cells in avian embryos. Anat Embryol 1994; 190:243–250.

    Article  PubMed  CAS  Google Scholar 

  208. Huang R, Zhi Q, Neubüser A et al. Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryo. Acta Anat 1996; 155:231–241.

    Article  PubMed  CAS  Google Scholar 

  209. Sanders EJ, Parker E. Ablation of axial structures activates apoptotic pathways in somite cells of the chick embryo. Anat Embryol 2001; 204:389–398.

    Article  PubMed  CAS  Google Scholar 

  210. Schmidt C, Christ B, Patel K et al. Experimental induction of BMP-4 expression leads to apoptosis in the paraxial and lateral plate mesoderm. Dev Biol 1998; 202:253–263.

    Article  PubMed  CAS  Google Scholar 

  211. Monsoro-Burq AH, Duprez D, Watanabe Y et al. The role of bone morphogenetic proteins in vertebral development. Development 1996; 122:3607–3616.

    PubMed  CAS  Google Scholar 

  212. Christ B. Die Entwicklung der Körperwandmetameric, experimentelle Untersuchungen an Hühnerembryonen. Habilitationsschrift 1975; Ruhr-Universität Bochum.

    Google Scholar 

  213. Ebner V. von. Urwirbel und Neugliederung der Wirbelsäule. Sitzungsber Akad Wiss Wien 1888; III/97:194–206.

    Google Scholar 

  214. Rickmann M, Fawcett LW, Keynes RJ. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol exp Morph 1985; 90:437.

    PubMed  CAS  Google Scholar 

  215. Keynes RJ, Stern CD. Segmentation in the vertebrate nervous system. Nature 1984; 310:786–789.

    Article  PubMed  CAS  Google Scholar 

  216. Bronner-Fraser M. Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 1986; 115:44–55.

    Article  PubMed  CAS  Google Scholar 

  217. Teillet M.-A, Kalcheim C, Le Douarin NM. Formation of the dorsal root ganglion in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells. Dev Biol 1987; 120:329.

    Article  PubMed  CAS  Google Scholar 

  218. Hrabe de Angelis M, McIntyre J, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 1997; 386:717–721.

    Article  PubMed  CAS  Google Scholar 

  219. Del Amo FF, Smith DE, Swiatek PJ et al. Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early post-implantation mouse development. Development 1992; 115:737–744.

    PubMed  Google Scholar 

  220. Reaume AG, Conlon RA, Zirngibl R et al. Expression analysis of a Notch homologue in the mouse embryo. Dev Biol 1992; 154:377–387.

    Article  PubMed  CAS  Google Scholar 

  221. Bettenhausen B, Hrabe de Angelis M, Simon D et al. Transient and restricted expression during mouse embryogenesis of DiI1, a murine gene closely related to Drosophila Delta. Development 1995; 121:2407–2418.

    PubMed  CAS  Google Scholar 

  222. Jen WC, Wettstein D, Turner D et al. The Notch ligand, X-Delta-1, mediates segmentation of the paraxial mesoderm in Xenopus embryos. Development 1997; 124:1169–1178.

    PubMed  CAS  Google Scholar 

  223. del Barco Barrantes I, Elia AJ, Wunsch K et al. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol 1999; 9:470–480.

    Article  Google Scholar 

  224. Rida PCG, Le Minh N, Jiang Y.-J. A Notch feeling of somite segmentation and beyond. Dev Biol 2004; 265:2–22.

    Article  PubMed  CAS  Google Scholar 

  225. Saga Y, Takeda H. The making of the somite. Molecular events in vertebrate segmentation. Nat Rev Genet 2001; 2:835–845.

    Article  PubMed  CAS  Google Scholar 

  226. Stockdale FE, Nikovits W Jr, Christ B. Molecular and cellular biology of avian somite development. Dev Dyn 2000; 219:304–321.

    Article  PubMed  CAS  Google Scholar 

  227. Bussen M, Petry M, Schuster-Gossler K et al. The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev 2004; 18:1209–1221.

    Article  PubMed  CAS  Google Scholar 

  228. Johnson J, Rhee J, parsons SM et al. The anterior/posterior polarity of somites is disrupted in paraxis-deficient mice. Dev Biol 2001; 229:176.

    Article  PubMed  CAS  Google Scholar 

  229. Corning HK. Über die sogenannte Neugliederung der Wirbelsäule und über das Schicksal der Urwirbelhöhle bei Reptilien. Morph Jb 1881; 17:611–622.

    Google Scholar 

  230. Bagnall KM, Higgins S, Sanders EJ. The contribution made by a single somite to the vertebral column: experimental evidence in support for resegmentation using the chick-quail chimera model. Development 1988; 103:69–85.

    PubMed  CAS  Google Scholar 

  231. Bagnall KM, Higgins S, Sanders EJ. The contribution made by a single somite to tissue within a body segment and assessment of their integration with similar cells from adjacent segments. Development 1989; 107:931–943.

    PubMed  CAS  Google Scholar 

  232. Huang R, Zhi Q, Brand-Saberi B. New experimental evidence for somite resegmentation. Anat Embryol 2000a; 202:195–200.

    Article  PubMed  CAS  Google Scholar 

  233. Ewan KBR, Everett AW. Evidence for resegmentation in the formation of the vertebral column using the novel approach of retroviral-mediated gene transfer. Exp Cell Res 1992; 198:315–320.

    Article  PubMed  CAS  Google Scholar 

  234. Aoyama H, Asamoto K. The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech Dev 2000; 99:71–82.

    Article  PubMed  CAS  Google Scholar 

  235. Evans DJR. Contribution of somitic cells to the avian ribs. Dev Biol 2003; 256:114–126.

    Article  PubMed  CAS  Google Scholar 

  236. Kieny M, Mauger A, Sengel P. Early regionalization of somitic mesoderm as studied by the development of axial skeleton of the chick embryo. Dev Biol 1972; 28:142–161.

    Article  PubMed  CAS  Google Scholar 

  237. Jacob M, Christ B, Jacob HJ. Über die regionale Determination des paraxialen Mesoderms junger Hühnerembryonen. Verh Anat Ges 1975; 69:263–269.

    PubMed  CAS  Google Scholar 

  238. Burke AC, Nelson CE, Morgan BA et al. Hox genes and the evolution of vertebrate axial morphology. Development 1995; 121:333–346.

    PubMed  CAS  Google Scholar 

  239. Duboule D, Dollé P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 1989; 8:14971505.

    Google Scholar 

  240. Graham A, Papalopulu N, Krumlauf R. The murine and Drosophila homeobox clusters have common features of organization and expression. Cell 1989; 5:367–378.

    Article  Google Scholar 

  241. Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78:191.

    Article  PubMed  CAS  Google Scholar 

  242. Gruss P, Kessel M. Axial specification in higher vertebrates. Curr Opin Genet Dev 1991; 1:204–210.

    Article  PubMed  CAS  Google Scholar 

  243. Kessel M. Molecular coding of axial positions by Hox genes. Semin Dev Biol 1991; 2:367.

    Google Scholar 

  244. McGinnis W, Krumlauf R. Homeobox genes and axial pattering. Cell 1992; 68:283.

    Article  PubMed  CAS  Google Scholar 

  245. Kessel M, Gruss P. Homeotic transformations of murine vertebrae, and concomitant alteration of Hox codes induced by retinoic acid. Cell 1991; 67:89–104.

    Article  PubMed  CAS  Google Scholar 

  246. Condie BG, Capecchi MR. Mice homozygous for a targeted disruption of Hoxs-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and axis. Development 1993; 119:579.

    PubMed  CAS  Google Scholar 

  247. Kostic D, Capecchi MR. Targeted disruption of the murine Hoxa-4 and Hoxa-6 genes result in homeotic transformations of the vertebral column. Mech Dev 1994; 46:231–247.

    Article  PubMed  CAS  Google Scholar 

  248. Medina-Martinez O, Bradley A, Ramirez-Solis R. A large targeted deletion of Hoxb1-Hoxb9 produces a series of single segment anterior homeotic transformations. Dev Biol 2000; 222:71.

    Article  PubMed  CAS  Google Scholar 

  249. Lufkin T, Mark M, Hart CP et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 1992; 359:835–841.

    Article  PubMed  CAS  Google Scholar 

  250. Kessel M, Balling R, Gruss P. Variations of cervical vertebrae after expression of a Hox-1.1 transgene mice. Cell 1990; 61:301.

    Article  PubMed  CAS  Google Scholar 

  251. Duboule D, Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trend Genet 1994; 10:358–364.

    Article  CAS  Google Scholar 

  252. Boncinelli E, Simeone A, Acompora D et al. HOX gene activation by retinoic acid. Trends Genet 1991; 7:329.

    PubMed  CAS  Google Scholar 

  253. Kessel M. Respecification of vertebral identities by retinoic acid. Development 1992; 115, 487.

    PubMed  CAS  Google Scholar 

  254. Dubrulle J, McGrew MJ, Pourquié O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell; 2001; 106:219–232. 106, 219.

    Article  PubMed  CAS  Google Scholar 

  255. Zakány J, Kmita M, Alarcon P et al. Localized and transient transcription of Hox genes suggest a link between patterning and the segmentation clock. Cell 2001; 106:207–217.

    Article  PubMed  Google Scholar 

  256. Burke AC. Hox genes and the global patterning of the somitic mesoderm. Curr Top Dev Biol 2000; 47:155.

    Article  PubMed  CAS  Google Scholar 

  257. Monsoro-Burq AH and Le Douarin NM. Duality of molecular signaling involved in vertebral chondrogenesis. In: Ordahl CP, ed. Somitogenesis, Part 2. London, New York: Academic Press, 2000:43–75.

    Google Scholar 

  258. Sudo H, Takahashi Y, Tonegawa A et al. Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Dev Biol 2001; 232:284–300.

    Article  PubMed  CAS  Google Scholar 

  259. Schweitzer R, Chyung JH, Murtaugh LC et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 2001; 128:3855–3866.

    PubMed  CAS  Google Scholar 

  260. Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell 2003; 113:235–248.

    Article  PubMed  CAS  Google Scholar 

  261. Hall BK. Chondrogenesis of the somitic mesoderm. Adv Anat Embryol Cell Biol 1977; 53:3.

    PubMed  CAS  Google Scholar 

  262. Christ B, Wilting J. From somites to vertebral column. Ann Anat 1992; 174:23–32.

    PubMed  CAS  Google Scholar 

  263. Christ B, Huang R, Wilting J. The development of the avian vertebral column. Anat Embryol 2000; 202:179–194.

    Article  PubMed  CAS  Google Scholar 

  264. Halata Z, Grim M, Christ B. Origin of spinal cord meninges sheaths of peripheral nerves and cutaneous receptors including Merkel cells. An experimental and ultrastructural study with avian chimeras. Anat Embryol 1990; 182:529–537.

    Article  PubMed  CAS  Google Scholar 

  265. Mittapalli VR, Huang R, Patel K et al. Arthrotome: a specific joint forming compartment in the avian somite. Dev Dyn 2005; 234:48–53.265.

    Article  PubMed  Google Scholar 

  266. Blechschmidt E. Die vorgeburtliche Entwicklungsstadien des Menschen. Karger, Basel-1961; New York.

    Google Scholar 

  267. Verbout AJ. The development of the vertebral column. Adv Anat Embryol Cell Biol 1985; 90:1–122.

    PubMed  CAS  Google Scholar 

  268. Mansouri A, Yokota Y, Wehr R et al. Paired-related murine homeobox gene expressed in the developing sclerotome, kidney and nervous system. Dev Dyn 1997; 210:53–65.

    Article  PubMed  CAS  Google Scholar 

  269. Neidhardt L, Lispert A, Hermann BG. A mouse gene of the paired-related homeobox xlass expressed in the caudal somite compartment and in the developing vertebral column, kidney and nervous system. Dev Genes Evol 1997; 207:330–339.

    Article  CAS  Google Scholar 

  270. Mansouri A, Voss AK, Thomas T et al. Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax-9. Development 2000; 127:2251–2258.

    PubMed  CAS  Google Scholar 

  271. Leitges M, Neidhardt L, Haenig B et al. The paired homeobox gene Uncx4.1 specifies pedicles transverse processes and proximal ribs of the vertebral column. Development 2000; 127:2259–2267.

    PubMed  CAS  Google Scholar 

  272. Schrägle J, Huang R, Christ B et al. Control of the temporal and spatial Uncx4.1 expression in the paraxial mesoderm of avian embryos. Anat Embryol 2004

    Google Scholar 

  273. Christ B, Jacob HJ, Jacob M. Experimentelle Untersuchungen zur Entwicklung der brustwand beim Hühnerembryo. Experientia 1974; 30:1449–1451.

    Article  PubMed  CAS  Google Scholar 

  274. Henderson DJ, Conway SJ, Copp AJ. Rib truncations and fusions in the Sp2H mouse reveal a role for Pax3 in specification of the ventro-lateral and posterior parts of the somite. Dev Biol 1999; 209:143–158.

    Article  PubMed  CAS  Google Scholar 

  275. Tallquist MD, Weismann KE, Hellström M et al. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 2000; 127:5059–5070.

    PubMed  CAS  Google Scholar 

  276. Grass S, Arnold HH, Braun T. Alterations in somite pattering of Myf-5-deficient mice. A possible role for FGF-4 and FGF-6. Development 1996; 122:141–150.

    PubMed  CAS  Google Scholar 

  277. Jacob M, Jacob HJ, Christ B. Die frühe Differentierung des chordanahen Bindegewebes. Raster-und transmissionselektronenmikroskopische Untersuchungen an Hühnerembryonen. Experientia 1975b; 31:1083–1086.

    Article  PubMed  CAS  Google Scholar 

  278. Smits O, Lefebre V. Sox 5 and Sox 6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 2003; 130:1135–1148.

    Article  PubMed  CAS  Google Scholar 

  279. Töndury G. Entwicklungsgeschichte und Fehlbildungen der Wirbelsäule. Hippokrates, Stuttgart, 1958

    Google Scholar 

  280. Chen Z.-F, Behringer RR. Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 1995; 9:686–699.

    Article  PubMed  CAS  Google Scholar 

  281. Wallin J, Wilting J, Koseki H et al. The role of Pax-1 in skeleton development. Development 1994; 120:1109–1121.

    PubMed  CAS  Google Scholar 

  282. Miura N, Wanaka A, Tohyama M et al. MFH1, a new member of the forkhead domain family is expressed in developing mesenchyme. FEBS Lett 1993; 326:171–176.

    Article  PubMed  CAS  Google Scholar 

  283. Neubüser A, Koseki H, Balling R. Characterisation and developmental, expression of Pax9, a paired-box-containing gene related to Pax1. Dev Biol 1995; 170:701–716.

    Article  PubMed  Google Scholar 

  284. Kaestner KH, Bleckmann SC, Monaghan AP et al. Clustered arrangement of winged helix 1 genes fkh-6 and MFH 1. Possible implications for mesoderm development. Development 1996; 122:1751–1758.

    PubMed  CAS  Google Scholar 

  285. Winnier GE, Hargett L, Hogan BLM. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryos. Genes Dev 1997; 11:926–940.

    Article  PubMed  CAS  Google Scholar 

  286. Behrens A, Haigh J, Mechta-Grigoriou F et al. Impaired intervertebral disc formation in the absence of Jun. Development 2003; 130:103–109.

    Article  PubMed  CAS  Google Scholar 

  287. Peters H, Wilm B, Sakai N et al. Paxl and Pax9 synergistically regulate vertebral column development. Development 1999; 126:5399–5407.

    PubMed  CAS  Google Scholar 

  288. Barnes GL, Hsu CW, Mariani BD et al. Chicken Pax-1 gene: Structure and expression during embryonic somite development. Differentiation 1996; 61:13–23.

    Article  PubMed  CAS  Google Scholar 

  289. Buchberger A, Schwarzer M, Brand T et al. Chicken winged-helix transcription factor cFKH-1 prefigures axial and appendicular skeletal structures during chicken embryogenesis. Dev Dyn 1998; 212:94–101.

    Article  PubMed  CAS  Google Scholar 

  290. Mankoo BS, Skuntz S, Hassegan I et al. The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 2003; 130:4655–4664.

    Article  PubMed  CAS  Google Scholar 

  291. Mankoo BS, Collins NS, Ashby P et al. Mox2 is a component of the genetic hierarchy controlling limb muscle development. Nature 1999; 400:69–73.

    Article  PubMed  CAS  Google Scholar 

  292. Kraus F, Haenig B, Kispert A. Cloning and expression analysis of the mouse T-box gene Tbx 18. Mech Dev 2001; 100:83–86.

    Article  PubMed  CAS  Google Scholar 

  293. Holtzer H. Morphogenetic influence of the spinal cord on the axial skeleton and musculature. Anat Rec 1951; 109:373–374.

    Google Scholar 

  294. Holtzer H. An experimental analysis of the development of the spinal column: the dispensability of the notochord. J Exp Zool 1952a; 121:573–591.

    Article  Google Scholar 

  295. Holtzer H. An experimental analysis of the development of the spinal column. I. Response pf precartilage cells to size variations of the spinal cord. J Exp Zool 1952b; 121:121–148.

    Article  Google Scholar 

  296. Holtzer H, Detwiler SR. An experimental analysis of the development of the spinal column. III, Induction of skeletogeneous cells. J Exp Zool 1953; 123:335–366.

    Article  Google Scholar 

  297. Holtzer H, Detwiler SR. The dependence of somitic differentiation on the neural axis. Anat Rec 1954; 118:390.

    Google Scholar 

  298. Lash J, Holtzer S, Holtzer H. An experimental analysis of the development of the spinal column. Exp Cell Res 1957; 13:292–303.

    Article  PubMed  CAS  Google Scholar 

  299. Lash JW, Hommes FA, Zilliken F. Induction of cell differentiation. I. The in vivo induction of vertebral cartilage with a low-molecular-weight tissue component. Biochim Biophys Acta 1962; 56:313–319.

    Article  PubMed  CAS  Google Scholar 

  300. Avery G, Chow M, Holtzer H. An experimental analysis of the development of the spinal column. V. Reactivity of chick somites. J Exp Zool 1956: 132:409–426.

    Article  Google Scholar 

  301. Strudel G. Ľaction morphogène du tube nerveux et de la corde sur la differenciation de vertebrès et des muscles vertebaux chez ľembryon de poulet. Arch Anat Microsc Morphol Exp 1955; 44:209–235.

    CAS  Google Scholar 

  302. Strudel G. Induction de cartilage in vitro par ľextrait de tube nerveux et de chorde de ľembryon de poulet. Dev Biol 1962; 4:67–86.

    Article  PubMed  CAS  Google Scholar 

  303. Christ B. Experimente zur Lageentwicklung der Somiten. Verh Anat Ges 1970; 64:555–564.

    PubMed  CAS  Google Scholar 

  304. Murtaugh LC, Chyung JH, Lassar AB. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 1999; 13:225–237.

    Article  PubMed  CAS  Google Scholar 

  305. Murtaugh LC, Zeng I, Chyung JH et al. The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell 2001; 1:411–422.

    Article  PubMed  CAS  Google Scholar 

  306. Lettice LA, Purdie LA, Carlson GJ et al. The mouse bagpipe gene controls development of axial skeleton, skull and spleen. Proc Natl Acad Sci USA 1999; 96:9655–9700.

    Article  Google Scholar 

  307. Tribioli C, Lufkin T. The murine Bapx 1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 1999; 126:5699–5711.

    PubMed  CAS  Google Scholar 

  308. Akazawa H, Komuro I, Sugitani Y. Targeted disruption of the homeobox transcription factor Bapxl results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cell 2000; 5:499–513.

    Article  CAS  Google Scholar 

  309. Rodrigo I, Bovolenta P, Mankoo BS et al. Meox homeodomain proteins are required for Bapxl expression in the sclerotome and activate its transcription by direct binding to its promoter. Mol Cell Biol 2004; 24:2757–2766.

    Article  PubMed  CAS  Google Scholar 

  310. Rodrigo I, Hill RE, Balling R et al. Paxl and Pax9 activate Bapxl to induce chondrogenic differentiation in the sclerotome. Development 2003; 130:473–482.

    Article  PubMed  CAS  Google Scholar 

  311. Zeng L, Kempf H, Murtaugh LC et al. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev 2002; 16:1990–2005.

    Article  PubMed  CAS  Google Scholar 

  312. Bell DM, Leung KK, Wheatley SC et al. SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178.

    Google Scholar 

  313. Healy C, Uwanohgo D, Sharpe PT. Expression of the chicken Sox9 gene marks the onset of cartilage differentiation. Ann N Y Acad Sci 1996; 785:261–262.

    Article  PubMed  CAS  Google Scholar 

  314. Bi W, Huang W, Whitworth DJ et al. Happloinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci USA 2001; 98:6698–6703.

    Article  PubMed  CAS  Google Scholar 

  315. Watanabe Y, Le Douarin NM. A role for BMP-4 in the development of subcutaneous cartilage. Mech Dev 1996; 57:69–78.

    Article  PubMed  CAS  Google Scholar 

  316. Iida K, Koseki H, Kakinuma H et al. Essential role of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 1997; 124:4627–4638.

    PubMed  CAS  Google Scholar 

  317. Freitas C, Rodrigues S, Charrier JB et al. Evidence for medial/lateral specification and positional information within the presomitic mesoderm. Development 2001; 128:5139–5147.

    PubMed  CAS  Google Scholar 

  318. Pourquié O, Coltey M, Bréant C et al. Control of somite patterning by signals from the lateral plate. Proc Natl Acad Sci USA 1995; 92:3219–3223.

    Article  PubMed  Google Scholar 

  319. Huang R, Zhi Q, Wilting J et al. Sclerotomal origin of the ribs. Development 2000b; 127:527–532.

    PubMed  CAS  Google Scholar 

  320. Wilting J, Brand-Saberi B, Huang R et al. The angiogenic potential of the avian somite. Dev Dyn 1995b, 202:165–171.

    PubMed  CAS  Google Scholar 

  321. Eichmann A, Marcelle C, Bréant C et al. Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 1993; 42:33–48.

    Article  PubMed  CAS  Google Scholar 

  322. Nimmagadda S, Geetha Loganathan P, Wilting J et al. Expression pattern of VEGFR-2 (Quek1) during quail development. Anat Embryol 2004; 20:219–224.

    Google Scholar 

  323. Nimmagadda S, Geetha Loganathan P, Christ B et al. BMP-4 and noggin control embryonic blood vessel formation by antagonistic regulation of VEGFR-2 (Quek1) expression. Dev Biol 2005; 280:100–110.

    Article  PubMed  CAS  Google Scholar 

  324. Norris WE, Stern CD, Keynes RJ. Molecular differences between the rostral and caudal halves of the sclerotome in the chick embryo. Development 1989; 105:541.

    PubMed  CAS  Google Scholar 

  325. Tosney KW. Cell and cell-interactions that guide motor axons in the developing chick embryo. Bio Essays 1991; 13:17–24.

    CAS  Google Scholar 

  326. Davies JA, Cook GM, Stern CD et al. Isolation from chick somites of a glycoprotein fraction that causes collapses of dorsal root ganglion growth cones. Neuron 1990; 4:11–19.

    Article  PubMed  CAS  Google Scholar 

  327. Wang HU, Anderson DJ. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest cell migration and motor axon outgrowth. Neuron 1997; 18:383.

    Article  PubMed  CAS  Google Scholar 

  328. Henkemeyer M, Marengere LEM, McGlade J et al. Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene 1994; 9:1001–1008.

    PubMed  CAS  Google Scholar 

  329. Ohta K, Nakamura M, Hirokawa K et al. The receptor kinase, Cek8, is transiently expressed on subtypes of motoneurons in the spinal cord during development. Mech Dev 1996; 54:59–69.

    Article  PubMed  CAS  Google Scholar 

  330. Robinson V, Smith A, Felnniken AM et al. Role of Eph receptors and ephrins in neural crest pathfinding. Cell Tissue Res 1997; 290:265–274

    Article  PubMed  CAS  Google Scholar 

  331. Tan S.-S., Crossin KL, Hoffman S et al. Asymmetric expression in somite of cytoactin and its proteoglycan ligand is correlated with neural crest cell distribution. Proc Natl Acad Sci USA 1987; 84:7981–7988.

    Google Scholar 

  332. Mackie EJ, Tucker RP, Halfter W et al. The distribution of tenscin coincides with pathway of neural crest cell migration. Development 1988; 102:237–256.

    PubMed  CAS  Google Scholar 

  333. Layer PG, Alber A, Rathjen FG. Sequential activation of butyrylcholinesterase in motoneurons and myotoms preceding growth of motor axons. Development 1988; 102:387–396.

    PubMed  CAS  Google Scholar 

  334. Goldstein RS, Teillet MA, Kalcheim C. The microenvironment created by grafting multiple rostral half-somites is mitogenic for neural crest cells. Proc Natl Acad Sci USA 1990; 87:4476–4480.

    Article  PubMed  CAS  Google Scholar 

  335. Goldstein RS, Avivi C, Geffen R. Initial axial level-dependent differences in size of avian dorsal root ganglia are imposed by the sclerotome. Dev Biol 1995; 168:214–222.

    Article  PubMed  CAS  Google Scholar 

  336. Stern CD, Keynes RJ. Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 1987; 99:261–272.

    PubMed  CAS  Google Scholar 

  337. Goldstein RS, Kalcheim C. Determination of epithelial half-somites in skeletal morphogenesis. Development 1992; 116:441–445.

    PubMed  CAS  Google Scholar 

  338. Oakley RA, Tosney KW. Peanut agglutinin and chondroitin-6-sulfate are molecular markers for tissues that act as barriers to axon advance in the avian embryo. Dev Biol 1991; 47–156.

    Google Scholar 

  339. Kerr RSE, Newgreen DF. Isolation and characterization of chondroitin sulfate proteoglycans from embryonic quail that influence neural crest. cell behavior. Dev Biol 1997; 192:108–115.

    Article  PubMed  CAS  Google Scholar 

  340. Landolt RM, Vaugham L, Winterhalter KH et al. Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration an axon outgrowth. Development 1995; 121:2303.

    PubMed  CAS  Google Scholar 

  341. Eickholdt BJ, Mackenzie SL, Graham A et al. Evidence for collapsin-1 functioning in the control of neural crest migration in both trunk and hindbrain regions. Development 1999; 126:2181–2189.

    Google Scholar 

  342. Debby-Brafmann A, Burstyn-Cohen T, Klar A et al. F-spondin is expressed in somite regions avoided by neural crest cells and mediates the inhibition of distinct somitic domains to neural crest migration. Neuron 1999; 22:475–488.

    Article  Google Scholar 

  343. Böhme C. Lichtmikroskopische Untersuchungen über die Struktur des Leptomeninx encephalis bei Gallus domesticus. Z Anat Entwickl-Gesch 1973; 140:215–236.

    Article  Google Scholar 

  344. Hochstetter F. Über die Entwicklung und Differenzierung der Hüllen des Rückenmarkers beim Menschen. Morph Jb 1934; 74:1–104.

    Google Scholar 

  345. O’Rahilly R, Müller F. The meninges in human development. J Neuropath exp Neurol 1986; 45:588–608.

    Article  PubMed  CAS  Google Scholar 

  346. Hanincec P, Grim M. Localization of dipeptidylpeptidase IV and alkaline phosphatase in developing spinal cord meninges and peripheral nerve covernings of the rat. Int J Devl Neuroscience 1990; 8:175–185.

    Article  Google Scholar 

  347. Marin F, Nieto MA. Expression of chicken slug and snail in mesenchymal components of the developing central nervous system. Dev Dyn 2004; 230:144–148.

    Article  PubMed  CAS  Google Scholar 

  348. Kurz H. Gärtner T, Eggli PS et al. First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 1996; 173:133–147.

    Article  PubMed  CAS  Google Scholar 

  349. Hogan KA, Ambler CA, Chapman DL et al. The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 2003; 131:1503–1513.

    Article  CAS  Google Scholar 

  350. Brent AE, Braun T, Tabin CJ. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 2005; 132:515–528.

    Article  PubMed  CAS  Google Scholar 

  351. Smith TG, Sweetman D, Patterson M et al. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development 2005; 132:1305–1314.

    Article  PubMed  CAS  Google Scholar 

  352. Parker LH, Schmidt M, Jin S.-W. et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 2004; 428:754.

    Article  PubMed  CAS  Google Scholar 

  353. Pardanaud L, Dieterlen-Lievré F. Emergence of endothelial and hemopoietic cells in the avian embryo. Anat Embryol 1993; 187:107–114.

    Article  PubMed  CAS  Google Scholar 

  354. Klessinger S, Christ B. Axial structures control latarality in the distribution pattern of endothelial cells. Anat Embryol 1996; 193:319–330.

    Article  PubMed  CAS  Google Scholar 

  355. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6:389–395.

    Article  PubMed  CAS  Google Scholar 

  356. Hagedorn M, Balke M, Schmidt A et al. VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis. Dev Dyn 2004; 230:23–33.

    Article  PubMed  CAS  Google Scholar 

  357. Wilting J, Papoutsi M, Schneider M et al. The lymphatic endothelium of the avian wing is of somitic origin. Dev Dyn 2000; 217:271–278.

    Article  PubMed  CAS  Google Scholar 

  358. Wilting J, Papoutsi M, Othmanm-Hassan K et al. Development of the avian lymphatic system. Microsc Res Tech 2001; 55:81–91.

    Article  PubMed  CAS  Google Scholar 

  359. Yamaguchi TP, Dumont DJ, Conlon RA et al. fkl-1 and flt-related receptor tyrosine kinase is an early marker for endothelial cell precursor. Development 1993; 118:489–498.

    PubMed  CAS  Google Scholar 

  360. Tosney KW. Cell and cell-interactions that guide motor axonas in the developing chick embryo. Bio Essays 1991; 13:17–24.

    CAS  Google Scholar 

  361. Ring C, Hassell J, Halfter W. Expression pattern of collagen IX and potential role in the segmentation of the peripheral nervous system. Dev Biol 1996; 180:41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Christ, B., Scaal, M. (2008). Formation and Differentiation of Avian Somite Derivatives. In: Maroto, M., Whittock, N.V. (eds) Somitogenesis. Advances in Experimental Medicine and Biology, vol 638. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09606-3_1

Download citation

Publish with us

Policies and ethics