Skip to main content

Memory CD4 T Cells in Influenza

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 386))

Abstract

Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadzadeh M, Farber DL (2002) Functional plasticity of an antigen-specific memory CD4 T cell population. Proc Natl Acad Sci U S A 99(18):11802–11807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allan W, Tabi Z, Cleary A, Doherty PC (1990) Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J Immunol 144(10):3980–3986

    CAS  PubMed  Google Scholar 

  • Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, Easterbrook P, Grey P, Smith D, McMichael AJ, Cooper DA, Rowland-Jones SL, Kelleher AD (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168(11):5954–5958

    Article  CAS  PubMed  Google Scholar 

  • Belshe RB, Edwards KM, Vesikari T, Black SV, Walker RE, Hultquist M, Kemble G, Connor EM (2007) Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med 356(7):685–696. doi:10.1056/NEJMoa065368

    Article  CAS  PubMed  Google Scholar 

  • Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC (2002) Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 76(23):12388–12393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bentebibel SE, Lopez S, Obermoser G, Schmitt N, Mueller C, Harrod C, Flano E, Mejias A, Albrecht RA, Blankenship D, Xu H, Pascual V, Banchereau J, Garcia-Sastre A, Palucka AK, Ramilo O, Ueno H (2013) Induction of ICOS+CXCR3+CXCR5+TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med 5(176):176ra132. doi:10.1126/scitranslmed.3005191

  • Bingaman AW, Patke DS, Mane VR, Ahmadzadeh M, Ndejembi M, Bartlett ST, Farber DL (2005) Novel phenotypes and migratory properties distinguish memory CD4 T cell subsets in lymphoid and lung tissue. Eur J Immunol 35:3173–3186

    Article  CAS  PubMed  Google Scholar 

  • Bot A, Bot S, Bona CA (1998) Protective role of gamma interferon during the recall response to influenza virus. J Virol 72(8):6637–6645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown DM, Dilzer AM, Meents DL, Swain SL (2006) CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 177(5):2888–2898

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Lee S, Garcia-Hernandez Mde L, Swain SL (2012) Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 86(12):6792–6803. doi:10.1128/JVI.07172-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bushar ND, Corbo E, Schmidt M, Maltzman JS, Farber DL (2010) Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc Natl Acad Sci U S A 107(2):827–831. doi:10.1073/pnas.0908126107 0908126107 [pii]

  • Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, Brenner MB (1994) Adhesion between epithelial cells and T lymphocytes mediated by E- cadherin and the alpha E beta 7 integrin. Nature 372(6502):190–193

    Article  CAS  PubMed  Google Scholar 

  • Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell IB, Smithies O (1995) Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269(5230):1583–1585

    Article  CAS  PubMed  Google Scholar 

  • Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663. doi:10.1146/annurev-immunol-031210-101400

    Article  CAS  PubMed  Google Scholar 

  • Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, Witztum JL, Kolls JK (2009) Critical role of IL-17RA in immunopathology of influenza infection. J Immunol 183(8):5301–5310. doi:10.4049/jimmunol.0900995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Bree GJ, van Leeuwen EM, Out TA, Jansen HM, Jonkers RE, van Lier RA (2005) Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung. J Exp Med 202(10):1433–1442

    Article  PubMed Central  PubMed  Google Scholar 

  • De Riva A, Bourgeois C, Kassiotis G, Stockinger B (2007) Noncognate interaction with MHC class II molecules is essential for maintenance of T cell metabolism to establish optimal memory CD4 T cell function. J Immunol 178(9):5488–5495

    Article  PubMed  Google Scholar 

  • Dong J, Ivascu C, Chang HD, Wu P, Angeli R, Maggi L, Eckhardt F, Tykocinski L, Haefliger C, Mowes B, Sieper J, Radbruch A, Annunziato F, Thiel A (2007) IL-10 is excluded from the functional cytokine memory of human CD4+ memory T lymphocytes. J Immunol 179(4):2389–2396

    Article  CAS  PubMed  Google Scholar 

  • Dudda JC, Simon JC, Martin S (2004) Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J Immunol 172(2):857–863

    Article  CAS  PubMed  Google Scholar 

  • Epstein SL, Lo CY, Misplon JA, Lawson CM, Hendrickson BA, Max EE, Subbarao K (1997) Mechanisms of heterosubtypic immunity to lethal influenza A virus infection in fully immunocompetent, T cell-depleted, beta2-microglobulin-deficient, and J chain-deficient mice. J Immunol 158(3):1222–1230

    CAS  PubMed  Google Scholar 

  • Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524–530. doi:10.1038/ni.1718 ni.1718 [pii]

  • Gerhard W (2001) The role of the antibody response in influenza virus infection. Curr Top Microbiol Immunol 260:171–190

    CAS  PubMed  Google Scholar 

  • Gerhard W, Mozdzanowska K, Furchner M, Washko G, Maiese K (1997) Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol Rev 159:95–103

    Article  CAS  PubMed  Google Scholar 

  • Graham MB, Braciale TJ (1997) Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J Exp Med 186(12):2063–2068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham MB, Braciale VL, Braciale TJ (1994) Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J Exp Med 180(4):1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Graham MB, Dalton DK, Giltinan D, Braciale VL, Stewart TA, Braciale TJ (1993) Response to influenza infection in mice with a targeted disruption in the interferon gamma gene. J Exp Med 178(5):1725–1732

    Article  CAS  PubMed  Google Scholar 

  • Hale JS, Youngblood B, Latner DR, Mohammed AU, Ye L, Akondy RS, Wu T, Iyer SS, Ahmed R (2013) Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity 38(4):805–817. doi:10.1016/j.immuni.2013.02.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He XS, Holmes TH, Zhang C, Mahmood K, Kemble GW, Lewis DB, Dekker CL, Greenberg HB, Arvin AM (2006) Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 80(23):11756–11766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoft DF, Babusis E, Worku S, Spencer CT, Lottenbach K, Truscott SM, Abate G, Sakala IG, Edwards KM, Creech CB, Gerber MA, Bernstein DI, Newman F, Graham I, Anderson EL, Belshe RB (2011) Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J Infect Dis 204(6):845–853. doi:10.1093/infdis/jir436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hogan RJ, Zhong W, Usherwood EJ, Cookenham T, Roberts AD, Woodland DL (2001) Protection from respiratory virus infections can be mediated by antigen-specific CD4(+) T cells that persist in the lungs. J Exp Med 193(8):981–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hua L, Yao S, Pham D, Jiang L, Wright J, Sawant D, Dent AL, Braciale TJ, Kaplan MH, Sun J (2013) Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection. J Virol 87(21):11884–11893. doi:10.1128/JVI.01461-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H, Busch DH (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci U S A 101(15):5610–5615. doi:10.1073/pnas.0308054101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL (2005) Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J Exp Med 202(5):697–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27(2):281–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Julkunen I, Melen K, Nyqvist M, Pirhonen J, Sareneva T, Matikainen S (2000) Inflammatory responses in influenza A virus infection. Vaccine 19(Suppl 1):S32–S37

    Article  CAS  PubMed  Google Scholar 

  • Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Kaech SM, Wherry EJ (2007) Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27(3):393–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2(4):251–262

    Article  CAS  PubMed  Google Scholar 

  • Kassiotis G, Garcia S, Simpson E, Stockinger B (2002) Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 3(3):244–250

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier JE, Cookenham T, Miller SC, Roberts AD, Christensen JP, Thomsen AR, Woodland DL (2009) CXCR3 directs antigen-specific effector CD4+ T cell migration to the lung during parainfluenza virus infection. J Immunol 183(7):4378–4384. doi:10.4049/jimmunol.0902022 jimmunol.0902022 [pii]

  • Kohlmeier JE, Miller SC, Smith J, Lu B, Gerard C, Cookenham T, Roberts AD, Woodland DL (2008) The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity 29(1):101–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM (2003) Interleukin 7 regulates the survival and generation of memory CD4 cells. J Exp Med 198(12):1797–1806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517. doi:10.1146/annurev.immunol.021908.132710 10.1146/annurev.immunol.021908.132710 [pii]

  • Lai W, Yu M, Huang MN, Okoye F, Keegan AD, Farber DL (2011) Transcriptional control of rapid recall by memory CD4 T cells. J Immunol 187(1):133–140. doi:10.4049/jimmunol.1002742 jimmunol.1002742 [pii]

  • Lee LY, Ha DL, Simmons C, de Jong MD, Chau NV, Schumacher R, Peng YC, McMichael AJ, Farrar JJ, Smith GL, Townsend AR, Askonas BA, Rowland-Jones S, Dong T (2008) Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest 118(10):3478–3490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YT, Suarez-Ramirez JE, Wu T, Redman JM, Bouchard K, Hadley GA, Cauley LS (2011) Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J Virol 85(9):4085–4094. doi:10.1128/JVI.02493-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lenz DC, Kurz SK, Lemmens E, Schoenberger SP, Sprent J, Oldstone MB, Homann D (2004) IL-7 regulates basal homeostatic proliferation of antiviral CD4+ T cell memory. Proc Natl Acad Sci U S A 101(25):9357–9362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Huston G, Swain SL (2003) IL-7 promotes the transition of CD4 effectors to persistent memory cells. J Exp Med 198(12):1807–1815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang S, Mozdzanowska K, Palladino G, Gerhard W (1994) Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J Immunol 152(4):1653–1661

    CAS  PubMed  Google Scholar 

  • Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS (2010) Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat Med 16(2):224–227. doi:10.1038/nm.2078 nm.2078 [pii]

  • MacLeod MK, David A, McKee AS, Crawford F, Kappler JW, Marrack P (2011) Memory CD4 T cells that express CXCR5 provide accelerated help to B cells. J Immunol 186(5):2889–2896. doi:10.4049/jimmunol.1002955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makgoba MW, Sanders ME, Ginther Luce GE, Dustin ML, Springer TA, Clark EA, Mannoni P, Shaw S (1988) ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature 331(6151):86–88. doi:10.1038/331086a0

    Article  CAS  PubMed  Google Scholar 

  • Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, Akondy R, Wang J, Casey KA, Barber DL, Kawamura KS, Fraser KA, Webby RJ, Brinkmann V, Butcher EC, Newell KA, Ahmed R (2010) Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207(3):553–564. doi:10.1084/jem.20090858 jem.20090858 [pii]

  • Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291(5512):2413–2417

    Article  CAS  PubMed  Google Scholar 

  • Matsukura S, Kokubu F, Kubo H, Tomita T, Tokunaga H, Kadokura M, Yamamoto T, Kuroiwa Y, Ohno T, Suzaki H, Adachi M (1998) Expression of RANTES by normal airway epithelial cells after influenza virus A infection. Am J Respir Cell Mol Biol 18(2):255–264. doi:10.1165/ajrcmb.18.2.2822

    Article  CAS  PubMed  Google Scholar 

  • McKinstry KK, Golech S, Lee WH, Huston G, Weng NP, Swain SL (2007) Rapid default transition of CD4 T cell effectors to functional memory cells. J Exp Med 204(9):2199–2211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, Huston G, Tighe M, Hamada H, Sell S, Dutton RW, Swain SL (2009) IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. J Immunol 182(12):7353–7363. doi:10.4049/jimmunol.0900657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, Dutton RW, Swain SL (2012) Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest 122(8):2847–2856. doi:10.1172/JCI63689 63689 [pii]

  • Mikhak Z, Strassner JP, Luster AD (2013) Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J Exp Med 210(9):1855–1869. doi:10.1084/jem.20130091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB (2007) The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25(27):5086–5096. doi:10.1016/j.vaccine.2007.03.046

    Article  PubMed  Google Scholar 

  • Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian UH (2003) Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424(6944):88–93

    Article  CAS  PubMed  Google Scholar 

  • Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH (2005) Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med 201(2):303–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H (2011) Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34(1):108–121. doi:10.1016/j.immuni.2010.12.012 S1074-S7613(10)00491-7 [pii]

  • Moulton VR, Bushar ND, Leeser DB, Patke DS, Farber DL (2006) Divergent generation of heterogeneous memory CD4 T cells. J Immunol 177(2):869–876. doi:177/2/869 [pii]

    Google Scholar 

  • Mozdzanowska K, Maiese K, Gerhard W (2000) Th cell-deficient mice control influenza virus infection more effectively than Th- and B cell-deficient mice: evidence for a Th-independent contribution by B cells to virus clearance. J Immunol 164(5):2635–2643

    Article  CAS  PubMed  Google Scholar 

  • Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161. doi:10.1146/annurev-immunol-032712-095954

    Article  CAS  PubMed  Google Scholar 

  • Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ (2013) IL-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and IFN-gamma production. Infect Immun. doi:10.1128/IAI.01477-13

    PubMed  Google Scholar 

  • O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327(5969):1098–1102. doi:10.1126/science.1178334

    Article  PubMed Central  PubMed  Google Scholar 

  • Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12(1):36–44. doi:10.1016/S1473-3099(11)70295-X

    Article  PubMed  Google Scholar 

  • Piet B, de Bree GJ, Smids-Dierdorp BS, van der Loos CM, Remmerswaal EB, von der Thusen JH, van Haarst JM, Eerenberg JP, Ten Brinke A, van der Bij W, Timens W, van Lier RA, Jonkers RE (2011) CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J Clin Invest. doi:10.1172/JCI44675 44675 [pii]

  • Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 204(4):951–961. doi:10.1084/jem.20061805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS (2011) Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLoS One 6(1):e16245. doi:10.1371/journal.pone.0016245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rathmell JC, Farkash EA, Gao W, Thompson CB (2001) IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167(12):6869–6876

    Article  CAS  PubMed  Google Scholar 

  • Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V, Sprague AG, Doherty PC, de Fougerolles AR, Topham DJ (2004) The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK (2001) Visualizing the generation of memory CD4 T cells in the whole body. Nature 410(6824):101–105

    Article  CAS  PubMed  Google Scholar 

  • Richards KA, Topham D, Chaves FA, Sant AJ (2010) Cutting edge: CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virus. J Immunol 185(9):4998–5002. doi:10.4049/jimmunol.1001395

    Article  CAS  PubMed  Google Scholar 

  • Ruane D, Brane L, Reis BS, Cheong C, Poles J, Do Y, Zhu H, Velinzon K, Choi JH, Studt N, Mayer L, Lavelle EC, Steinman RM, Mucida D, Mehandru S (2013) Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J Exp Med 210 (9):1871–1888. doi:10.1084/jem.2012276210.1084/jem.20122762

  • Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  CAS  PubMed  Google Scholar 

  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments]. Nature 401(6754):708–712

    Article  CAS  PubMed  Google Scholar 

  • Sanders CJ, Doherty PC, Thomas PG (2010) Respiratory epithelial cells in innate immunity to influenza virus infection. Cell Tissue Res. doi:10.1007/s00441-010-1043-z

    PubMed  Google Scholar 

  • Sandoval F, Terme M, Nizard M, Badoual C, Bureau MF, Freyburger L, Clement O, Marcheteau E, Gey A, Fraisse G, Bouguin C, Merillon N, Dransart E, Tran T, Quintin-Colonna F, Autret G, Thiebaud M, Suleman M, Riffault S, Wu TC, Launay O, Danel C, Taieb J, Richardson J, Zitvogel L, Fridman WH, Johannes L, Tartour E (2013) Mucosal imprinting of vaccine-induced CD8(+) T cells is crucial to inhibit the growth of mucosal tumors. Sci Transl Med 5(172):172ra120. doi:10.1126/scitranslmed.3004888

  • Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181. doi:10.1038/nri2711

    Article  CAS  PubMed  Google Scholar 

  • Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38(1):187–197. doi:10.1016/j.immuni.2012.09.020 S1074-7613(12)00521-3 [pii]

  • Seddon B, Tomlinson P, Zamoyska R (2003) Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol 4(7):680–686

    Article  CAS  PubMed  Google Scholar 

  • Shedlock DJ, Shen H (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300(5617):337–339

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Iwasaki A (2012) A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491(7424):463–467. doi:10.1038/nature11522 nature11522 [pii]

  • Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440(7083):540–544. doi:10.1038/nature04606 nature04606 [pii]

  • Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC (2013) Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8(+) T cells. Nat Immunol 14(12):1285–1293. doi:10.1038/ni.2745

    Article  CAS  PubMed  Google Scholar 

  • Spensieri F, Borgogni E, Zedda L, Bardelli M, Buricchi F, Volpini G, Fragapane E, Tavarini S, Finco O, Rappuoli R, Del Giudice G, Galli G, Castellino F (2013) Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after vaccination, exert helper function, and predict antibody responses. Proc Natl Acad Sci U S A 110(35):14330–14335. doi:10.1073/pnas.1311998110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sprenger H, Meyer RG, Kaufmann A, Bussfeld D, Rischkowsky E, Gemsa D (1996) Selective induction of monocyte and not neutrophil-attracting chemokines after influenza A virus infection. J Exp Med 184(3):1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Strutt TM, McKinstry KK, Dibble JP, Winchell C, Kuang Y, Curtis JD, Huston G, Dutton RW, Swain SL (2010) Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16(5):558–564 (551 p following 564). doi:10.1038/nm.2142 nm.2142 [pii]

  • Sun J, Madan R, Karp CL, Braciale TJ (2009) Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat Med 15(3):277–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun JC, Bevan MJ (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300(5617):339–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun K, Torres L, Metzger DW (2010) A detrimental effect of interleukin-10 on protective pulmonary humoral immunity during primary influenza A virus infection. J Virol 84(10):5007–5014. doi:10.1128/JVI.02408-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A 98(15):8732–8737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL (2011) Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol 187(11):5510–5514. doi:10.4049/jimmunol.1102243 jimmunol.1102243 [pii]

  • Teijaro JR, Verhoeven D, Page CA, Turner D, Farber DL (2010) Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol 84(18):9217-9226. doi:10.1128/JVI.01069-10 JVI.01069-10 [pii]

  • Thatte J, Dabak V, Williams MB, Braciale TJ, Ley K (2003) LFA-1 is required for retention of effector CD8 T cells in mouse lungs. Blood 101(12):4916–4922

    Article  CAS  PubMed  Google Scholar 

  • Thompson WW, Comanor L, Shay DK (2006) Epidemiology of seasonal influenza: use of surveillance data and statistical models to estimate the burden of disease. J Infect Dis 194(Suppl 2):S82–S91. doi:10.1086/507558

    Article  PubMed  Google Scholar 

  • Topham DJ, Tripp RA, Doherty PC (1997) CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159(11):5197–5200

    CAS  PubMed  Google Scholar 

  • Turner DL, Bickham KL, Thome JJ, Kim CY, D’Ovidio F, Wherry EJ, Farber DL (2013) Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. doi:10.1038/mi.2013.67 mi201367 [pii]

  • Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, Matsuzaki G (2007) IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 178(6):3786–3796

    Article  CAS  PubMed  Google Scholar 

  • Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, Smyth G, Bevan MJ (2012) The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J Immunol 189(7):3462–3471. doi:10.4049/jimmunol.1201305 jimmunol.1201305 [pii]

  • Wareing MD, Lyon AB, Lu B, Gerard C, Sarawar SR (2004) Chemokine expression during the development and resolution of a pulmonary leukocyte response to influenza A virus infection in mice. J Leukoc Biol 76(4):886–895. doi:10.1189/jlb.1203644

    Article  CAS  PubMed  Google Scholar 

  • Weiss ID, Wald O, Wald H, Beider K, Abraham M, Galun E, Nagler A, Peled A (2010) IFN-gamma treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. J Interferon Cytokine Res 30(6):439–449. doi:10.1089/jir.2009.0084

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, Lambkin-Williams R, Gilbert A, Oxford J, Nicholas B, Staples KJ, Dong T, Douek DC, McMichael AJ, Xu XN (2012) Preexisting influenza-specific CD4(+) T cells correlate with disease protection against influenza challenge in humans. Nat Med 18(2):274–280. doi:10.1038/nm.2612 nm.2612 [pii]

  • Woodland DL, Hogan RJ, Zhong W (2001) Cellular immunity and memory to respiratory virus infections. Immunol Res 24(1):53–67

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS (2013) Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol. doi:10.1189/jlb.0313180

  • Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, Schwarzenberger P, Shellito JE, Kolls JK (2001a) Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 25(3):335–340. doi:10.1165/ajrcmb.25.3.4424

    Article  CAS  PubMed  Google Scholar 

  • Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK (2001b) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194(4):519–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu CI, Becker C, Wang Y, Marches F, Helft J, Leboeuf M, Anguiano E, Pourpe S, Goller K, Pascual V, Banchereau J, Merad M, Palucka K (2013) Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector T cells via the cytokine TGF-beta. Immunity 38(4):818–830. doi:10.1016/j.immuni.2013.03.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zammit DJ, Turner DL, Klonowski KD, Lefrancois L, Cauley LS (2006) Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24(4):439–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Donna L. Farber is supported by NIH grants AI106697, AI100119, and AI083022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Farber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zens, K.D., Farber, D.L. (2014). Memory CD4 T Cells in Influenza. In: Oldstone, M., Compans, R. (eds) Influenza Pathogenesis and Control - Volume II. Current Topics in Microbiology and Immunology, vol 386. Springer, Cham. https://doi.org/10.1007/82_2014_401

Download citation

Publish with us

Policies and ethics