Skip to main content

From Amoeba to Macrophages: Exploring the Molecular Mechanisms of Legionella pneumophila Infection in Both Hosts

  • Chapter
  • First Online:
Molecular Mechanisms in Legionella Pathogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 376))

Abstract

Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires’ disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Kwaik Y (1996) The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Appl Environ Microbiol 62(6):2022–2028

    Google Scholar 

  • Abu-Zant A, Jones S, Asare R, Suttles J, Price C, Graham J et al (2007) Anti-apoptotic signalling by the Dot/Icm secretion system of L. pneumophila. Cell Microbiol 9(1):246–264

    CAS  PubMed  Google Scholar 

  • Akamine M, Higa F, Arakaki N, Kawakami K, Takeda K, Akira S et al (2005) Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect Immun 73(1):352–361

    CAS  PubMed  Google Scholar 

  • Al-Quadan T, Kwaik YA (2011) Molecular characterization of exploitation of the polyubiquitination and farnesylation machineries of dictyostelium discoideum by the AnkB F-box effector of Legionella pneumophila. Front Microbiol 2:23

    CAS  PubMed  Google Scholar 

  • Al-Quadan T, Price CT, Kwaik YA (2012) Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol 20(6):299–306

    Google Scholar 

  • Alli OA, Gao LY, Pedersen LL, Zink S, Radulic M, Doric M et al (2000) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68(11):6431–6440

    CAS  PubMed  Google Scholar 

  • Alter-Koltunoff M, Goren S, Nousbeck J, Feng CG, Sher A, Ozato K et al (2008) Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc. J Biol Chem 283(5):2724–2733

    CAS  PubMed  Google Scholar 

  • Amer AO (2010) Modulation of caspases and their non-apoptotic functions by Legionella pneumophila. Cell Microbiol 12(2):140–147

    CAS  PubMed  Google Scholar 

  • Arasaki K, Roy CR (2010) Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b. Traffic 11(5):587–600

    CAS  PubMed  Google Scholar 

  • Banga S, Gao P, Shen X, Fiscus V, Zong W-X, Chen L et al (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A 104(12):5121–5126

    CAS  PubMed  Google Scholar 

  • Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT et al (2008) Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol 181(10):7147–7156

    CAS  PubMed  Google Scholar 

  • Bardill JP, Miller JL, Vogel JP (2005) IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol 56(1):90–103

    CAS  PubMed  Google Scholar 

  • Bartfeld S, Engels C, Bauer B, Aurass P, Flieger A, Brüggemann H et al (2009) Temporal resolution of two-tracked NF-kappaB activation by Legionella pneumophila. Cell Microbiol 11(11):1638–1651

    CAS  PubMed  Google Scholar 

  • Bellinger-Kawahara C, Horwitz MA (1990) Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella pneumophila and mediates phagocytosis of liposome-MOMP complexes by human monocytes. J Exp Med 172(4):1201–1210

    CAS  PubMed  Google Scholar 

  • Belyi Y, Tabakova I, Stahl M, Aktories K (2008) Lgt: a family of cytotoxic glucosyl transferases produced by Legionella pneumophila. J Bacteriol 190(8):3026–3035

    CAS  PubMed  Google Scholar 

  • Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7(1):7–19

    CAS  PubMed  Google Scholar 

  • Berger KH, Merriam JJ, Isberg RR (1994) Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 14(4):809–822

    CAS  PubMed  Google Scholar 

  • Bozue JA, Johnson W (1996) Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect Immun 64(2):668–673

    CAS  PubMed  Google Scholar 

  • Brand BC, Sadosky AB, Shuman HA (1994) The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol Microbiol 14(4):797–808

    CAS  PubMed  Google Scholar 

  • Brassinga AKC, Kinchen JM, Cupp ME, Day SR, Hoffman PS, Sifri CD (2010) Caenorhabditis is a metazoan host for Legionella. Cell Microbiol 12(3):343–361

    CAS  PubMed  Google Scholar 

  • Brassinga AK, Sifri CD (2013) The Caenorhabditis elegans model of Legionella infection. Methods Mol Biol 954:439–461

    Google Scholar 

  • Breiman RF, Fields BS, Sanden GN, Volmer L, Meier A, Spika JS (1990) Association of shower use with legionnaires-disease—possible role of amoebas. J Am Med Assoc 263(21):2924–2926

    CAS  Google Scholar 

  • Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M et al (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284(8):4846–4856

    CAS  PubMed  Google Scholar 

  • Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5(7):e1000508

    PubMed  Google Scholar 

  • Campbell-Valois F-X, Trost M, Chemali M, Dill BD, Laplante A, Duclos S et al (2012) Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol Cell Proteomics 11(7):M111.016378

    Google Scholar 

  • Campodonico EM, Chesnel L, Roy CR (2005) A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol 56(4):918–933

    CAS  PubMed  Google Scholar 

  • Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A, Ma L et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36(11):1165–1173

    CAS  PubMed  Google Scholar 

  • Celli J, de Chastellier C, Franchini D-M, Pizarro-Cerda J, Moreno E, Gorvel J-P (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198(4):545–556

    CAS  PubMed  Google Scholar 

  • Chang B, Kura F, Amemura-Maekawa J, Koizumi N, Watanabe H (2005) Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun 73(7):4272–4280

    CAS  PubMed  Google Scholar 

  • Charpentier X, Gabay JE, Reyes M, Zhu JW, Weiss A, Shuman HA (2009) Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog 5(7):e1000501 (Roy CR, editor)

    PubMed  Google Scholar 

  • Chen G, Zhuchenko O, Kuspa A (2007) Immune-like phagocyte activity in the social amoeba. Science 317(5838):678–681

    CAS  PubMed  Google Scholar 

  • Chen J (2004) Legionella effectors that promote nonlytic release from protozoa. Science 303(5662):1358–1361

    CAS  PubMed  Google Scholar 

  • Chong A, Lima CA, Allan DS, Nasrallah GK, Garduno RA (2009) The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization. Infect Immun 77(11):4724–4739

    CAS  PubMed  Google Scholar 

  • Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen CS et al (1998) Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol 8(19):1069–1077

    CAS  PubMed  Google Scholar 

  • Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338(6110):1072–1076

    CAS  PubMed  Google Scholar 

  • Cianciotto NP (2007) Iron acquisition by Legionella pneumophila. Biometals. 20(3–4):323–331

    CAS  PubMed  Google Scholar 

  • Cianciotto NP, Fields BS (1992) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A 89(11):5188–5191

    CAS  PubMed  Google Scholar 

  • Cirillo JD, Falkow S, Tompkins LS (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62(8):3254–3261

    CAS  PubMed  Google Scholar 

  • Cirillo SL, Lum J, Cirillo JD (2000) Identification of novel loci involved in entry by Legionella pneumophila. Microbiology (Reading, Engl.) 146 (Pt 6):1345–1359

    Google Scholar 

  • Cirillo SLG, Yan L, Littman M, Samrakandi MM, Cirillo JD (2002) Role of the Legionella pneumophila rtxA gene in amoebae. Microbiology (Reading, Engl.) 148(Pt 6):1667–1677

    Google Scholar 

  • Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N et al (2013) Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 14(2):R11

    PubMed  Google Scholar 

  • Conover GM, Derré I, Vogel JP, Isberg RR (2003) The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48(2):305–321

    CAS  PubMed  Google Scholar 

  • Cosson P, Soldati T (2008) Eat, kill or die: when amoeba meets bacteria. Curr Opin Microbiol 11(3):271–276

    CAS  PubMed  Google Scholar 

  • Coxon PY, Summersgill JT, Ramirez JA, Miller RD (1998) Signal transduction during Legionella pneumophila entry into human monocytes. Infect Immun 66(6):2905–2913

    CAS  PubMed  Google Scholar 

  • Creasey EA, Isberg RR (2012) The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci U S A 109(9):3481–3486

    CAS  PubMed  Google Scholar 

  • de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD et al (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4(8):e1000117

    PubMed  Google Scholar 

  • de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF, Kalachikov S et al (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187(22):7716–7726

    PubMed  Google Scholar 

  • Degtyar E, Zusman T, Ehrlich M, Segal G (2009) A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol 11(8):1219–1235

    CAS  PubMed  Google Scholar 

  • Derré I, Isberg RR (2004) Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 72(5):3048–3053

    PubMed  Google Scholar 

  • Dolezal P, Aili M, Tong J, Jiang J-H, Marobbio CM, Lee SF et al (2012) Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog 8(1):e1002459 (Roy CR, editor)

    CAS  PubMed  Google Scholar 

  • Dorer MS, Kirton D, Bader JS, Isberg RR (2006) RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2(4):e34

    PubMed  Google Scholar 

  • Elliott JA, Winn WC (1986) Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infect Immun 51(1):31–36

    CAS  PubMed  Google Scholar 

  • Ensminger AW, Isberg RR (2010) E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 78(9):3905–3919

    CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18(17):4689–4699

    CAS  PubMed  Google Scholar 

  • Fabbi M, Pastoris MC, Scanziani E, Magnino S, Di Matteo L (1998) Epidemiological and environmental investigations of Legionella pneumophila infection in cattle and case report of fatal pneumonia in a calf. J Clin Microbiol 36(7):1942–1947

    CAS  PubMed  Google Scholar 

  • Fajardo M, Schleicher M, Noegel A, Bozzaro S, Killinger S, Heuner K et al (2004) Calnexin, calreticulin and cytoskeleton-associated proteins modulate uptake and growth of Legionella pneumophila in Dictyostelium discoideum. Microbiology (Reading, Engl.) 150(Pt 9):2825–2835

    Google Scholar 

  • Falcó V, Fernández de Sevilla T, Alegre J, Ferrer A, Martínez Vázquez JM (1991) Legionella pneumophila. A cause of severe community-acquired pneumonia. Chest 100(4):1007–1011

    Google Scholar 

  • Farbrother P, Wagner C, Na J, Tunggal B, Morio T, Urushihara H et al (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 8(3):438–456

    CAS  PubMed  Google Scholar 

  • Fernandez RC, Lee SH, Haldane D, Sumarah R, Rozee KR (1989) Plaque assay for virulent Legionella pneumophila. J Clin Microbiol 27(9):1961–1964

    CAS  PubMed  Google Scholar 

  • Fernandez RC, Logan SM, Lee SH, Hoffman PS (1996) Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect Immun 64(6):1968–1976

    CAS  PubMed  Google Scholar 

  • Fernandez-Moreira E, Helbig JH, Swanson MS (2006) Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun 74(6):3285–3295

    CAS  PubMed  Google Scholar 

  • Fields BS (1996) The molecular ecology of Legionellae. Trends Microbiol 4(7):286–290

    CAS  PubMed  Google Scholar 

  • Fields BS, Barbaree JM, Shotts EB, Feeley JC, Morrill WE, Sanden GN et al (1986) Comparison of guinea pig and protozoan models for determining virulence of Legionella species. Infect Immun 53(3):553–559

    CAS  PubMed  Google Scholar 

  • Fitzgeorge RB, Baskerville A, Broster M, Hambleton P, Dennis PJ (1983) Aerosol infection of animals with strains of Legionella pneumophila of different virulence: comparison with intraperitoneal and intranasal routes of infection. J Hyg (Lond) 90(1):81–89

    CAS  Google Scholar 

  • Flanagan MD, Lin S (1980) Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem 255(3):835–838

    CAS  PubMed  Google Scholar 

  • Fontana MF, Shin S, Vance RE (2012) Activation of host MAP kinases by Legionella pneumophila secreted effectors that inhibit host protein translation. Infect Immun 80(10):3570–3575

    Google Scholar 

  • Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8(11):917–929

    CAS  PubMed  Google Scholar 

  • Francione L, Smith PK, Accari SL, Taylor PE, Bokko PB, Bozzaro S et al (2009) Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Dis Model Mech 2(9–10):479–489

    CAS  PubMed  Google Scholar 

  • Francione LM, Fisher PR (2011) Heteroplasmic mitochondrial disease in Dictyostelium discoideum. Biochem Pharmacol 82(10):1510–1520

    CAS  PubMed  Google Scholar 

  • Franco IS, Shohdy N, Shuman HA (2012) The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 8(2):e1002546 (Stebbins CE, editor)

    CAS  PubMed  Google Scholar 

  • Franco IS, Shuman HA, Charpentier X (2009) The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol 11(10):1435–1443

    CAS  PubMed  Google Scholar 

  • Fujio H, Yoshida S, Miyamoto H, Mitsuyama M, Mizuguchi Y (1992) Investigation of the role of macrophages and endogenous interferon-gamma in natural resistance of mice against Legionella pneumophila infection. FEMS Microbiol Immunol 4(4):183–191

    CAS  PubMed  Google Scholar 

  • Gabay JE, Blake M, Niles WD, Horwitz MA (1985) Purification of Legionella pneumophila major outer membrane protein and demonstration that it is a porin. J Bacteriol 162(1):85–91

    CAS  PubMed  Google Scholar 

  • Gao LY, Harb OS, Abu Kwaik Y (1997) Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 65(11):4738–4746

    Google Scholar 

  • Gao LY, Kwaik YA (2000) The mechanism of killing and exiting the protozoan host Acanthamoeba polyphaga by Legionella pneumophila. Environ Microbiol 2(1):79–90

    CAS  PubMed  Google Scholar 

  • Gao LY, Stone BJ, Brieland JK, Abu Kwaik Y (1998) Different fates of Legionella pneumophila pmi and mil mutants within macrophages and alveolar epithelial cells. Microb Pathog 25(6):291–306

    Google Scholar 

  • Garduno RA, Faulkner G, Trevors MA, Vats N, Hoffman PS (1998a) Immunolocalization of Hsp60 in Legionella pneumophila. J Bacteriol 180(3):505–513

    CAS  PubMed  Google Scholar 

  • Garduno RA, Quinn FD, Hoffman PS (1998b) HeLa cells as a model to study the invasiveness and biology of Legionella pneumophila. Can J Microbiol 44(5):430–440

    CAS  PubMed  Google Scholar 

  • Ge J, Xu H, Li T, Zhou Y, Zhang Z, Li S et al (2009) A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci U S A 106(33):13725–13730

    CAS  PubMed  Google Scholar 

  • Gibson FC, Tzianabos AO, Rodgers FG (1994) Adherence of Legionella pneumophila to U-937 cells, guinea-pig alveolar macrophages, and MRC-5 cells by a novel, complement-independent binding mechanism. Can J Microbiol 40(10):865–872

    CAS  PubMed  Google Scholar 

  • Gilmore TD, Wolenski FS (2012) NF-κB: where did it come from and why? Immunol Rev 246(1):14–35

    PubMed  Google Scholar 

  • Girard R, Pedron T, Uematsu S, Balloy V, Chignard M, Akira S et al (2003) Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 116(Pt 2):293–302

    CAS  PubMed  Google Scholar 

  • Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2(10):721–730

    CAS  PubMed  Google Scholar 

  • Harada T, Tanikawa T, Iwasaki Y, Yamada M, Imai Y, Miyake M (2012) Phagocytic entry of Legionella pneumophila into macrophages through phosphatidylinositol 3,4,5-trisphosphate-independent pathway. Biol Pharm Bull 35(9):1460–1468

    CAS  PubMed  Google Scholar 

  • Harb OS, Venkataraman C, Haack BJ, Gao LY, Kwaik YA (1998) Heterogeneity in the attachment and uptake mechanisms of the Legionnaires’ disease bacterium, Legionella pneumophila, by protozoan hosts. Appl Environ Microbiol 64(1):126–132

    CAS  PubMed  Google Scholar 

  • Harding CR, Schroeder GN, Reynolds S, Kosta A, Collins JW, Mousnier A, Frankel G (2012) Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun 80(8):2780–2790

    Google Scholar 

  • Hastings KT, Cresswell P (2011) Disulfide reduction in the endocytic pathway: immunological functions of gamma-interferon-inducible lysosomal thiol reductase. Antioxid Redox Signal 15(3):657–668

    CAS  PubMed  Google Scholar 

  • Hawn TR, Berrington WR, Smith IA, Uematsu S, Akira S, Aderem A et al (2007) Altered inflammatory responses in TLR5-deficient mice infected with Legionella pneumophila. J Immunol 179(10):6981–6987

    CAS  PubMed  Google Scholar 

  • Hawn TR, Smith KD, Aderem A, Skerrett SJ (2006) Myeloid differentiation primary response gene (88)- and toll-like receptor 2-deficient mice are susceptible to infection with aerosolized Legionella pneumophila. J Infect Dis 193(12):1693–1702

    CAS  PubMed  Google Scholar 

  • Hayashi T, Miyake M, Fukui T, Sugaya N, Daimon T, Itoh S et al (2008) Exclusion of actin-binding protein p57/coronin-1 from bacteria-containing phagosomes in macrophages infected with Legionella. Biol Pharm Bull 31(5):861–865

    CAS  PubMed  Google Scholar 

  • Heidtman M, Chen EJ, Moy M-Y, Isberg RR (2009) Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11(2):230–248

    CAS  PubMed  Google Scholar 

  • Hervet E, Charpentier X, Vianney A, Lazzaroni J-C, Gilbert C, Atlan D et al (2011) Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun 79(5):1936–1950

    CAS  PubMed  Google Scholar 

  • Hilbi H, Segal G, Shuman HA (2001) Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 42(3):603–617

    CAS  PubMed  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K et al (2005) CD36 is a sensor of diacylglycerides. Nature 433(7025):523–527

    CAS  PubMed  Google Scholar 

  • Horwitz MA (1983a) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158(6):2108–2126

    CAS  PubMed  Google Scholar 

  • Horwitz MA (1983b) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158(4):1319–1331

    CAS  PubMed  Google Scholar 

  • Horwitz MA (1984) Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36(1):27–33

    CAS  PubMed  Google Scholar 

  • Horwitz MA, Maxfield FR (1984) Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol 99(6):1936–1943

    CAS  PubMed  Google Scholar 

  • Hsu F, Zhu W, Brennan L, Tao L, Luo Z-Q, Mao Y (2012) Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A 109(34):13567–13572

    CAS  PubMed  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of Host Cell Function by Legionella pneumophilaType IV Effectors. Annu Rev Cell Dev Biol 26(1):261–283

    CAS  PubMed  Google Scholar 

  • Husmann LK, Johnson W (1992) Adherence of Legionella pneumophila to guinea pig peritoneal macrophages, J774 mouse macrophages, and undifferentiated U937 human monocytes: role of Fc and complement receptors. Infect Immun 60(12):5212–5218

    CAS  PubMed  Google Scholar 

  • Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450(7168):365–369

    CAS  PubMed  Google Scholar 

  • Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7(1):13–24

    CAS  PubMed  Google Scholar 

  • Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ et al (1996) Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem 271(25):14657–14660

    CAS  PubMed  Google Scholar 

  • Ivanov SS, Charron G, Hang HC, Roy CR (2010) Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem 285(45):34686–34698

    CAS  PubMed  Google Scholar 

  • Jack RS, Fan X, Bernheiden M, Rune G, Ehlers M, Weber A et al (1997) Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 389(6652):742–745

    CAS  PubMed  Google Scholar 

  • Jank T, Böhmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K (2012) Domain organization of Legionella effector SetA. Cell Microbiol 14(6):852–868

    CAS  PubMed  Google Scholar 

  • Kagan JC, Roy CR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4(12):945–954

    CAS  PubMed  Google Scholar 

  • Kagan JC, Stein M-P, Pypaert M, Roy CR (2004) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199(9):1201–1211

    CAS  PubMed  Google Scholar 

  • Khelef N, Shuman HA, Maxfield FR (2001) Phagocytosis of wild-type Legionella pneumophila occurs through a wortmannin-insensitive pathway. Infect Immun 69(8):5157–5161

    CAS  PubMed  Google Scholar 

  • Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H et al (2013) A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 43(5):1333–1344

    CAS  PubMed  Google Scholar 

  • Kikuhara H, Ogawa M, Miyamoto H, Nikaido Y, Yoshida S (1994) Intracellular multiplication of Legionella pneumophila in Tetrahymena thermophila. J UOEH 16(4):263–275

    CAS  PubMed  Google Scholar 

  • King CH, Fields BS, Shotts EB, White EH (1991) Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells. Infect Immun 59(3):758–763

    CAS  PubMed  Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525

    CAS  PubMed  Google Scholar 

  • Köhler R, Bubert A, Goebel W, Steinert M, Hacker J, Bubert B (2000) Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila. Mol Gen Genet 262(6):1060–1069

    PubMed  Google Scholar 

  • Krasity BC, Troll JV, Weiss JP, McFall-Ngai MJ (2011) LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochem Soc Trans 39(4):1039–1044

    CAS  PubMed  Google Scholar 

  • Krinos C, High AS, Rodgers FG (1999) Role of the 25 kDa major outer membrane protein of Legionella pneumophila in attachment to U-937 cells and its potential as a virulence factor for chick embryos. J Appl Microbiol 86(2):237–244

    CAS  PubMed  Google Scholar 

  • Ku B, Lee K-H, Park WS, Yang C-S, Ge J, Lee S-G et al (2012) VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog 8(12):e1003082

    CAS  PubMed  Google Scholar 

  • Kubori T, Hyakutake A, Nagai H (2008) Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67(6):1307–1319

    CAS  PubMed  Google Scholar 

  • Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR (2006) A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci U S A 103(49):18745–18750

    CAS  PubMed  Google Scholar 

  • Lau HY, Ashbolt NJ (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107(2):368–378

    CAS  PubMed  Google Scholar 

  • Li CKF, Pender SLF, Pickard KM, Chance V, Holloway JA, Huett A et al (2004) Impaired immunity to intestinal bacterial infection in stromelysin-1 (matrix metalloproteinase-3)-deficient mice. J. Immunol. 173(8):5171–5179

    CAS  PubMed  Google Scholar 

  • Li Z, Dugan AS, Bloomfield G, Skelton J, Ivens A, Losick V et al (2009) The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA. Cell Host Microbe. 6(3):253–267

    CAS  PubMed  Google Scholar 

  • Lifshitz Z, Burstein D, Peeri M, Zusman T, Schwartz K, Shuman HA et al (2013) Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc. Natl. Acad. Sci. U.S.A. 110(8):E707–E715

    PubMed  Google Scholar 

  • Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Publ Group 9(10):1171–1178

    CAS  Google Scholar 

  • Liu M, Conover GM, Isberg RR (2008) Legionella pneumophila EnhC is required for efficient replication in tumour necrosis factor α-stimulated macrophages. Cell Microbiol 10(9):1906–1923

    CAS  PubMed  Google Scholar 

  • Liu M, Haenssler E, Uehara T, Losick VP, Park JT, Isberg RR (2012) The Legionella pneumophila EnhC Protein Interferes with immunostimulatory muramyl peptide production to evade innate immunity. Cell Host Microbe 12(2):11

    Google Scholar 

  • Liu Y, Luo Z-Q (2007) The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 75(2):592–603

    CAS  PubMed  Google Scholar 

  • Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM et al (2010) The Legionella pneumophila F-box protein Lpp 2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 12(9):1272–1291

    CAS  PubMed  Google Scholar 

  • Losick VP, Haenssler E, Moy M-Y, Isberg RR (2010) LnaB: a Legionella pneumophila activator of NF-kappa B. Cell Microbiol 12(8):1083–1097

    CAS  PubMed  Google Scholar 

  • Losick VP, Isberg RR (2006) NF-kappaB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J Exp Med 203(9):2177–2189

    CAS  PubMed  Google Scholar 

  • Lu H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7(7):995–1007

    CAS  PubMed  Google Scholar 

  • Luo Z-Q, Isberg RR (2004) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 101(3):841–846

    CAS  PubMed  Google Scholar 

  • Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11(1):47–56

    CAS  PubMed  Google Scholar 

  • McDonald R, Schreier HJ, Watts JEM (2012) Phylogenetic analysis of microbial communities in different regions of the gastrointestinal tract in Panaque nigrolineatus, a wood-eating fish. PLoS ONE 7(10):e48018 (Ravel J, editor)

    CAS  PubMed  Google Scholar 

  • Moffat JF, Tompkins LS (1992) A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect Immun 60(1):296–301

    CAS  PubMed  Google Scholar 

  • Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71(1):20–28

    CAS  PubMed  Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8(9):971–977

    CAS  PubMed  Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295(5555):679–682

    CAS  PubMed  Google Scholar 

  • Nagai H, Kubori T (2011) Type IVB secretion systems of legionella and other gram-negative bacteria. Front Microbiol 2:136

    PubMed  Google Scholar 

  • Nakanishi H, Brewer KA, Exton JH (1993) Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 268(1):13–16

    CAS  PubMed  Google Scholar 

  • Neunuebel MR, Chen Y, Gaspar AH, Backlund PS, Yergey A, Machner MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333(6041):453–456

    CAS  PubMed  Google Scholar 

  • Newsome AL, Baker RL, Miller RD, Arnold RR (1985) Interactions between Naegleria fowleri and Legionella pneumophila. Infect Immun 50(2):449–452

    CAS  PubMed  Google Scholar 

  • Newton HJ, Sansom FM, Dao J, Cazalet C, Bruggemann H, Albert-Weissenberger C et al (2008) Significant role for ladC in initiation of Legionella pneumophila infection. Infect Immun 76(7):3075–3085

    CAS  PubMed  Google Scholar 

  • Ninio S, Celli J, Roy CR (2009) A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog 5(1):e1000278

    PubMed  Google Scholar 

  • Nora T, Lomma M, Gomez-Valero L, Buchrieser C (2009) Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 4(6):691–701

    CAS  PubMed  Google Scholar 

  • Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320(5883):1651–1654

    CAS  PubMed  Google Scholar 

  • Payne NR, Horwitz MA (1987) Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med 166(5):1377–1389

    CAS  PubMed  Google Scholar 

  • Peracino B, Balest A, Bozzaro S (2010) Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 123(Pt 23):4039–4051

    CAS  PubMed  Google Scholar 

  • Peracino B, Wagner C, Balest A, Balbo A, Pergolizzi B, Noegel AA et al (2006) Function and mechanism of action of Dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 7(1):22–38

    CAS  PubMed  Google Scholar 

  • Pereira MSF, Morgantetti GF, Massis LM, Horta CV, Hori JI, Zamboni DS (2011) Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol 187(12):6447–6455

    CAS  PubMed  Google Scholar 

  • Prashar A, Bhatia S, Tabatabaeiyazdi Z, Duncan C, Garduño RA, Tang P et al (2012) Mechanism of invasion of lung epithelial cells by filamentous Legionella pneumophila. Cell Microbiol 14(10):1632–1655

    Google Scholar 

  • Price CTD, Al-Khodor S, Al-Quadan T, Abu Kwaik Y (2010a) Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78(5):2079–2088

    CAS  PubMed  Google Scholar 

  • Price CTD, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y (2010b) Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med 207(8):1713–1726

    CAS  PubMed  Google Scholar 

  • Price CTD, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334(6062):1553–1557

    CAS  PubMed  Google Scholar 

  • Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10(12):2416–2433

    CAS  PubMed  Google Scholar 

  • Rechnitzer C, Blom J (1989) Engulfment of the Philadelphia strain of Legionella pneumophila within pseudopod coils in human phagocytes. Comparison with other Legionella strains and species. APMIS 97(2):105–114

    CAS  PubMed  Google Scholar 

  • Richards AM, Dwingelo Von JE, Price CT, Abu Kwaik Y (2013) Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 4(4):307–314

    Google Scholar 

  • Rittig MG, Burmester GR, Krause A (1998) Coiling phagocytosis: when the zipper jams, the cup is deformed. Trends Microbiol 6(10):384–388

    CAS  PubMed  Google Scholar 

  • Robinson CG, Roy CR (2006) Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol 8(5):793–805

    CAS  PubMed  Google Scholar 

  • Rodgers FG, Gibson FC (1993) Opsonin-independent adherence and intracellular development of Legionella pneumophila within U-937 cells. Can J Microbiol 39(7):718–722

    CAS  PubMed  Google Scholar 

  • Roisin-Bouffay C, Luciani M-F, Klein G, Levraud J-P, Adam M, Golstein P (2004) Developmental cell death in dictyostelium does not require paracaspase. J Biol Chem 279(12):11489–11494

    CAS  PubMed  Google Scholar 

  • Rolando M, Buchrieser C (2012) Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol 7(3):369–381

    CAS  PubMed  Google Scholar 

  • Roy CR, Salcedo SP, Gorvel J-PE (2006) Pathogen-endoplasmic-reticulum interactions: in through the out door. Nat Rev Immunol 6(2):136–147

    CAS  PubMed  Google Scholar 

  • Schoebel S, Blankenfeldt W, Goody RS, Itzen A (2010) High-affinity binding of phosphatidylinositol 4-phosphate by Legionella pneumophila DrrA. EMBO Rep 11(8):598–604

    CAS  PubMed  Google Scholar 

  • Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28(3):1241–1254

    PubMed  Google Scholar 

  • Seeger EM, Thuma M, Fernandez-Moreira E, Jacobs E, Schmitz M, Helbig JH (2010) Lipopolysaccharide of Legionella pneumophila shed in a liquid culture as a nonvesicular fraction arrests phagosome maturation in amoeba and monocytic host cells. FEMS Microbiol Lett 307(2):113–119

    CAS  PubMed  Google Scholar 

  • Segal G, Shuman HA (1999) Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 67(5):2117–2124

    CAS  PubMed  Google Scholar 

  • Shevchuk O, Batzilla C, Hägele S, Kusch H, Engelmann S, Hecker M et al (2009) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299(7):489–508

    CAS  PubMed  Google Scholar 

  • Shin S (2012) Innate Immunity to Intracellular Pathogens: Lessons Learned from Legionella pneumophila. Adv Appl Microbiol 79:43–71

    CAS  PubMed  Google Scholar 

  • Shin S, Case CL, Archer KA, Nogueira CV, Kobayashi KS, Flavell RA et al (2008) Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog 4(11):e1000220

    PubMed  Google Scholar 

  • Shohdy N, Efe JA, Emr SD, Shuman HA (2005) Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A 102(13):4866–4871

    CAS  PubMed  Google Scholar 

  • Solomon JM, Rupper A, Cardelli JA, Isberg RR (2000) Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68(5):2939–2947

    CAS  PubMed  Google Scholar 

  • Stone BJ, Abu Kwaik Y (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 66(4):1768–1775

    CAS  PubMed  Google Scholar 

  • Strom MS, Lory S (1993) Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 47:565–596

    CAS  PubMed  Google Scholar 

  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK et al (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263(5147):678–681

    CAS  PubMed  Google Scholar 

  • Sturgill-Koszycki S, Swanson MS (2000) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192(9):1261–1272

    CAS  PubMed  Google Scholar 

  • Sun EW, Wagner ML, Maize A, Kemler D, Garland-Kuntz E, Xu L et al (2013) Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics. PLoS ONE 8(4):e62972

    CAS  PubMed  Google Scholar 

  • Swanson MS, Hammer BK (2000) Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613

    CAS  PubMed  Google Scholar 

  • Tachado SD, Samrakandi MM, Cirillo JD (2008) Non-opsonic phagocytosis of Legionella pneumophila by macrophages is mediated by phosphatidylinositol 3-kinase. PLoS ONE 3(10):e3324

    PubMed  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    CAS  PubMed  Google Scholar 

  • Tan Y, Arnold RJ, Luo Z-Q (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108(52):21212–21217

    CAS  PubMed  Google Scholar 

  • Tan Y, Luo Z-Q (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475(7357):506–509

    CAS  PubMed  Google Scholar 

  • Thi EP, Reiner NE (2012) Phosphatidylinositol 3-kinases and their roles in phagosome maturation. J Leukoc Biol 92(3):553–566

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774

    CAS  PubMed  Google Scholar 

  • Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114(Pt 24):4637–4650

    CAS  PubMed  Google Scholar 

  • Uberall F, Hellbert K, Kampfer S, Maly K, Villunger A, Spitaler M et al (1999) Evidence that atypical protein kinase C-lambda and atypical protein kinase C-zeta participate in Ras-mediated reorganization of the F-actin cytoskeleton. J Cell Biol 144(3):413–425

    CAS  PubMed  Google Scholar 

  • Urwyler S, Brombacher E, Hilbi H (2009a) Endosomal and secretory markers of the Legionella-containing vacuole. Commun Integr Biol 2(2):107–109

    CAS  PubMed  Google Scholar 

  • Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R et al (2009b) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10(1):76–87

    CAS  PubMed  Google Scholar 

  • Vandersmissen L, De Buck E, Saels V, Coil DA, Anné J (2010) A Legionella pneumophilacollagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells. FEMS Microbiol Lett 306(2):168–176

    CAS  PubMed  Google Scholar 

  • VanRheenen SM, Luo Z-Q, O’Connor T, Isberg RR (2006) Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun 74(6):3597–3606

    CAS  PubMed  Google Scholar 

  • Venkataraman C, Haack BJ, Bondada S, Abu Kwaik Y (1997) Identification of a Gal/GalNAc lectin in the protozoan Hartmannella vermiformis as a potential receptor for attachment and invasion by the Legionnaires’ disease bacterium. J Exp Med 186(4):537–547

    CAS  PubMed  Google Scholar 

  • Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366(Pt 3):689–704

    CAS  PubMed  Google Scholar 

  • Vinzing M, Eitel J, Lippmann J, Hocke AC, Zahlten J, Slevogt H et al (2008) NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180(10):6808–6815

    CAS  PubMed  Google Scholar 

  • Watanabe Y, Tateno H, Nakamura-Tsuruta S, Kominami J, Hirabayashi J, Nakamura O et al (2009) The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev Comp Immunol 33(2):187–197

    CAS  PubMed  Google Scholar 

  • Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2(5):e46

    PubMed  Google Scholar 

  • Welsh CT, Summersgill JT, Miller RD (2004) Increases in c-Jun N-terminal kinase/stress-activated protein kinase and p38 activity in monocyte-derived macrophages following the uptake of Legionella pneumophila. Infect Immun 72(3):1512–1518

    CAS  PubMed  Google Scholar 

  • Xu L, Shen X, Bryan A, Banga S, Swanson MS, Luo Z-Q (2010) Inhibition of host vacuolar H + -ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6(3):e1000822

    PubMed  Google Scholar 

  • Yan M, Collins RF, Grinstein S, Trimble WS (2005) Coronin-1 function is required for phagosome formation. Mol Biol Cell 16(7):3077–3087

    CAS  PubMed  Google Scholar 

  • Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7(3):318–325

    CAS  PubMed  Google Scholar 

  • Zhang C, Kuspa A (2009) Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection. PLoS ONE 4(5):e5706

    PubMed  Google Scholar 

  • Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600

    CAS  PubMed  Google Scholar 

  • Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J et al (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS ONE 6(3):e17638

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Institut Pasteur, the Centre National de la Recherche (CNRS), the Institut Carnot-Pasteur MI, the Fondation pour la Recherche Médicale (FRM) grant N° DEQ20120323697, the French region Ile-de-France (DIM Malinf) and the grant n°ANR-10-LABX-62-IBEID. M. Rolando is holder of a Roux contract financed by the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Buchrieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Escoll, P., Rolando, M., Gomez-Valero, L., Buchrieser, C. (2013). From Amoeba to Macrophages: Exploring the Molecular Mechanisms of Legionella pneumophila Infection in Both Hosts. In: Hilbi, H. (eds) Molecular Mechanisms in Legionella Pathogenesis. Current Topics in Microbiology and Immunology, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_351

Download citation

Publish with us

Policies and ethics