Skip to main content

JAK-Mutant Myeloproliferative Neoplasms

  • Chapter
  • First Online:
Therapeutic Kinase Inhibitors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 355))

Abstract

Although the Janus family of kinases (JAK1, JAK2, JAK3, and TYK2) has been extensively characterized and investigated, the role of Janus kinase activation in the pathogenesis and therapy of human malignancies was not fully appreciated until recently when multiple studies identified a recurrent somatic mutation in the JAK2 tyrosine kinase (JAK2V617F) in the majority of patients with BCR-ABL-negative myeloproliferative neoplasms (MPN), polycythemia vera, essential thrombocytosis, and primary myelofibrosis. Other mutations that activate the JAK-STAT signaling pathway have since been identified in JAK2V617F-negative MPN patients and in a subset of patients with acute myeloid leukemia and acute lymphoid leukemia. In addition, dysregulated JAK-STAT signaling has been implicated in the pathogenesis of a spectrum of epithelial neoplasms. In this chapter, we will review the recent studies that identified genetic alterations that activate JAK signaling in different malignancies, and discuss the recent efforts aimed at developing small-molecule inhibitors of JAK kinase activity for the treatment of MPNs and other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab O et al (2010) Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 70:447–452

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Wahab O et al (2011a) Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia 19(5):769–780

    Google Scholar 

  • Abdel-Wahab O et al (2011b) DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 25:1219–1220

    Article  PubMed  CAS  Google Scholar 

  • Akada H et al (2010) Conditional expression of heterozygous or homozygous JAK2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 115(17):3589–3597

    Article  PubMed  CAS  Google Scholar 

  • Argetsinger LS et al (1993) Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74:237–244

    Article  PubMed  CAS  Google Scholar 

  • Baxter EJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    PubMed  CAS  Google Scholar 

  • Beer PA et al (2009) Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. Br J Haematol 144:904–908

    Article  PubMed  CAS  Google Scholar 

  • Bercovich D et al (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Boggon TJ, Li Y, Manley PW, Eck MJ (2005) Crystal structure of the JAK3 kinase domain in complex with a staurosporine analog. Blood 106:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Bumm TG et al (2006) Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 66:11156–11165

    Article  PubMed  CAS  Google Scholar 

  • Campbell PJ et al (2005) Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 366:1945–1953

    Article  PubMed  CAS  Google Scholar 

  • Campbell PJ et al (2006) Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 108:3548–3555

    Article  PubMed  CAS  Google Scholar 

  • Carbuccia N et al (2009a) Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia 24(2):469–473

    Article  PubMed  Google Scholar 

  • Carbuccia N et al (2009b) Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23:2183–2186

    Article  PubMed  CAS  Google Scholar 

  • Chen E et al (2010) Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell 18:524–535

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Kim EJ, Park UH, Sin HS, Um SJ (2006) Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem 281:17588–17598

    Article  PubMed  CAS  Google Scholar 

  • Delhommeau F et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301

    Article  PubMed  Google Scholar 

  • Ding J et al (2004) Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 103:4198–4200

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Dusa A et al (2008) Substitution of pseudokinase domain residue Val-617 by large non-polar amino acids causes activation of JAK2. J Biol Chem 283:12941–12948

    Article  PubMed  CAS  Google Scholar 

  • Ernst T et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    Article  PubMed  CAS  Google Scholar 

  • Figueroa ME et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  PubMed  CAS  Google Scholar 

  • Fisher CL et al (2010) Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice. Dev Biol 337:9–15

    Article  PubMed  CAS  Google Scholar 

  • Flex E et al (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 205:751–758

    Article  PubMed  CAS  Google Scholar 

  • Gao SP et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117:3846–3856

    Article  PubMed  CAS  Google Scholar 

  • Gelsi-Boyer V et al (2009) Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 145:788–800

    Article  PubMed  CAS  Google Scholar 

  • Gross S et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344

    Article  PubMed  CAS  Google Scholar 

  • Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF (1992) JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7:1347–1353

    PubMed  CAS  Google Scholar 

  • Hedvat M et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    Article  PubMed  CAS  Google Scholar 

  • Hexner EO et al (2008) Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 111:5663–5671

    Article  PubMed  CAS  Google Scholar 

  • James C et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  • Jones AV et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449

    Article  PubMed  CAS  Google Scholar 

  • Kilpivaara O et al (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41:455–459

    Article  PubMed  CAS  Google Scholar 

  • Ko M et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843

    Article  PubMed  CAS  Google Scholar 

  • Koppikar P et al (2010) Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood 115(14):2919–2927

    Article  PubMed  CAS  Google Scholar 

  • Kralovics R, Guan Y, Prchal JT (2002) Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 30:229–236

    Article  PubMed  CAS  Google Scholar 

  • Kralovics R et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Lacout C et al (2006) JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108:1652–1660

    Article  PubMed  CAS  Google Scholar 

  • Landgren O et al (2008) Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24, 577 first-degree relatives of 11, 039 patients with myeloproliferative neoplasms in Sweden. Blood 112:2199–2204

    Article  PubMed  CAS  Google Scholar 

  • Langemeijer SM et al (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41:838–842

    Article  PubMed  CAS  Google Scholar 

  • Levine RL et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397

    Article  PubMed  CAS  Google Scholar 

  • Ley TJ et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363:2424–2433

    Article  PubMed  CAS  Google Scholar 

  • Li J et al (2010) JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 30(24):5741–5751

    Google Scholar 

  • Lucet IS et al (2006) The structural basis of janus kinase 2 inhibition by a potent and specific pan-janus kinase inhibitor. Blood 107:176–183

    Article  PubMed  CAS  Google Scholar 

  • Marcucci G et al (2010) IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 28:2348–2355

    Article  PubMed  CAS  Google Scholar 

  • Mardis ER et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Marty C et al (2010) Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood 116:783–787

    Article  PubMed  CAS  Google Scholar 

  • Marubayashi S et al (2010) HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J Clin Invest 120:3578–3593

    Article  PubMed  CAS  Google Scholar 

  • Mesa RA et al (2005) Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 105:973–977

    Article  PubMed  CAS  Google Scholar 

  • Moran-Crusio K et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20(1):11–24

    Article  PubMed  CAS  Google Scholar 

  • Mullally A et al (2010) Physiological JAK2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 17:584–596

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG et al (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 106:9414–9418

    Article  PubMed  CAS  Google Scholar 

  • Nikoloski G et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667

    Article  PubMed  CAS  Google Scholar 

  • Oh ST et al (2010) Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116:988–992

    Article  PubMed  CAS  Google Scholar 

  • Olcaydu D et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454

    Article  PubMed  CAS  Google Scholar 

  • Pardanani AD et al (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1,182 patients. Blood 108:3472–3476

    Article  PubMed  CAS  Google Scholar 

  • Pardanani A et al (2007) TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21:1658–1668

    Article  PubMed  CAS  Google Scholar 

  • Pardanani A et al (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 29(7):789–796

    Article  PubMed  CAS  Google Scholar 

  • Parganas E et al (1998) JAK2 is essential for signaling through a variety of cytokine receptors. Cell 93:385–395

    Article  PubMed  CAS  Google Scholar 

  • Pikman Y et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3:e270

    Article  PubMed  Google Scholar 

  • Quivoron C et al (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 19(6):805–813

    Article  Google Scholar 

  • Rebouissou S et al (2009) Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457:200–204

    Article  PubMed  CAS  Google Scholar 

  • Saharinen P, Silvennoinen O (2002) The pseudokinase domain is required for suppression of basal activity of JAK2 and JAK3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 277:47954–47963

    Article  PubMed  CAS  Google Scholar 

  • Scott LM, Scott MA, Campbell PJ, Green AR (2006) Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 108:2435–2437

    Article  PubMed  CAS  Google Scholar 

  • Scott LM et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356:459–468

    Article  PubMed  CAS  Google Scholar 

  • Shochat C et al (2011) Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 208:901–908

    Article  PubMed  CAS  Google Scholar 

  • Tahiliani M et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed  CAS  Google Scholar 

  • Theocharides A et al (2007) Leukemic blasts in transformed JAK2–V617F-positive myeloproliferative disorders are frequently negative for the JAK2–V617F mutation. Blood 110:375–379

    Article  PubMed  CAS  Google Scholar 

  • Tiedt R et al (2008) Ratio of mutant JAK2–V617F to wild-type JAK2 determines the MPD phenotypes in transgenic mice. Blood 111:3931–3940

    Article  PubMed  CAS  Google Scholar 

  • Tomasson MH et al (2008) Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 111:4797–4808

    Article  PubMed  CAS  Google Scholar 

  • Verstovsek S et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2009) Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 114:5024–5033

    Article  PubMed  CAS  Google Scholar 

  • Ward PS et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    Article  PubMed  CAS  Google Scholar 

  • Wernig G et al (2006) Expression of JAK2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107:4274–4281

    Article  PubMed  CAS  Google Scholar 

  • Wernig G et al (2008) Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13:311–320

    Article  PubMed  CAS  Google Scholar 

  • Witthuhn BA et al (1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74:227–236

    Article  PubMed  CAS  Google Scholar 

  • Xing S et al (2008) Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 111:5109–5117

    Article  PubMed  CAS  Google Scholar 

  • Yan XJ et al (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43(4):309–315

    Article  PubMed  CAS  Google Scholar 

  • Yoda A et al (2009) Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 107(1):252–257

    Article  PubMed  Google Scholar 

  • Zaleskas VM et al (2006) Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 1:e18

    Article  PubMed  Google Scholar 

  • Zhao R et al (2005) Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 280:22788–22792

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross L. Levine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levine, R.L. (2011). JAK-Mutant Myeloproliferative Neoplasms. In: Mellinghoff, I., Sawyers, C. (eds) Therapeutic Kinase Inhibitors. Current Topics in Microbiology and Immunology, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_170

Download citation

Publish with us

Policies and ethics