Skip to main content

Indoles: Industrial, Agricultural and Over-the-Counter Uses

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 26))

Abstract

Indole-containing compounds are best known for their medicinal properties in the pharmaceutical industry. Although to a lesser degree, the indole motif none-the-less appears in many significant products across the entire chemical industry. This chapter describes the role that indole plays in a more commodity setting and provides examples illustrating these uses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baeyer A, Emmerling A (1869) Synthese des Indols Chem Ber 2:679

    Article  Google Scholar 

  2. Zollinger H (2003) Color chemistry: syntheses, properties and applications of organic dyes and pigments, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  3. Hunger K (ed) (2003) Industrial dyes: chemistry, properties, applications. Wiley, New York

    Google Scholar 

  4. Iqbal M (2008) Textile dyes. Rehbar, Karachi

    Google Scholar 

  5. Mumumdar RB, Ernst LA, Mujumbar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconj Chem 4:105–111

    Article  Google Scholar 

  6. Reiter RJ, Tan D-X, Manchester LC, Pilar TM, Flores LJ, Koppisepi S (2007) Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 52:11–28

    CAS  Google Scholar 

  7. Carrillo-Vico A, Guerrero J, Lardone P, Reiter R (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27:189–200

    Article  CAS  Google Scholar 

  8. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM (2009) L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res 2:45–60

    CAS  Google Scholar 

  9. McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolate, the biologically active constituents of cruciferous vegetables. Br J Nutr 3:687–697

    Article  Google Scholar 

  10. Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G (1997) A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact 102:79–129

    Article  Google Scholar 

  11. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharm Res 55:224–236

    Article  CAS  Google Scholar 

  12. Ashok BT, Chen Y, Liu X, Bradlow HL, Mittelman A, Tiwari RK (2001) Abrogation of estrogen-mediated cellular and biochemical effects by indole-3-carbinol. Nutr Cancer 41:180–187

    CAS  Google Scholar 

  13. Meng Q, Yuan F, Goldberg ID, Rosen EM, Auborn K, Fan S (2000) Indole-3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J Nutr 130:2927–2931

    CAS  Google Scholar 

  14. Dashwood RH (1998) Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact 110:1–5

    Article  CAS  Google Scholar 

  15. Johnson F, Huff J (2002) Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indol-3-carbinol – certain health supplements may cause both carcinogenic and anticarcinogenic effects. Carcinogenisis 23:1767–1768

    Article  CAS  Google Scholar 

  16. Suzui M, Inamine M, Kaneshiro T, Morioka T, Yoshimi N, Suzuki R, Kohno H, Tanaka T (2005) Indole-3-carbinol inhibits the growth of human colon carcinoma cells but enhances the tumor multiplicity and volume of azoxymethane-induced rat colon carcinogenesis. Int J Oncol 27:1391–1399

    CAS  Google Scholar 

  17. Bell MC, Crowley-Nowick P, Bradlow HL, Sepkovic DW, Schmidt-Griiminger D, Howell P, Mayeaux EJ, Tucker A, Turbat-Herrera EA, Mathis JM (2000) Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol 78(2):123–129

    Article  CAS  Google Scholar 

  18. Auborn K, Abramson A, Bradlow HL, Sepkovic D, Mullooly V (1998) Estrogen metabolism and laryngeal papillomatosis: a pilot study on dietary prevention. Anticancer Res 18:4569–4573

    CAS  Google Scholar 

  19. Leibelt DA, Hedstrom OR, Fischer KA, Pereira CB, Williams DE (2003) Evaluation of chronic dietary exposure to indole-3-carbinol and absorption-enhanced 3,3’-diindolylmethane in sprague-dawley rats. Toxicol Sci 74:10–21

    Article  CAS  Google Scholar 

  20. Minich DM, Bland JS (2007) A review of the clinical efficacy and safety of cruciferous vegetable phytochemicals. Nutr Rev 65:259–267

    Article  Google Scholar 

  21. Bradlow HL (2008) Review. Indole-3-carbinol as a chemoprotective agent in breast and prostate cancer. In Vivo 22:441–445

    CAS  Google Scholar 

  22. Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Proc Natl Acac Sci USA 88:9543–9547

    Article  CAS  Google Scholar 

  23. Liu H, Wormke M, Safe SH, Bjeldanes LF (1994) Indolo[3,2-b]carbazole: a dietary-derived factor that exhibits both antiestrogenic and estrogenic activity. J Natl Cancer Inst 86:1758–1765

    Article  CAS  Google Scholar 

  24. Pohjanvirta R, Korkalainen M, McGuire J, Simanainen U, Juvonen R, Tuomisto JT, Unkila M, Viluksela M, Bergman J, Poellinger L, Tuomisto J (2002) Comparison of acute toxicities of indolo[3,2-b]carbazole (ICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive rats. Food Chem Toxicol 40:1023–1032

    Article  CAS  Google Scholar 

  25. Riby JE, Feng C, Chang YC, Schaldach CM, Firestone GL, Bjeldanes LF (2000) The major cyclic trimeric product of indole-3-carbinol is a strong agonist of the estrogen receptor signaling pathway. Biochemistry 39:910–918

    Article  CAS  Google Scholar 

  26. Rahman KM, Banerjee S, Ali S, Ahmad A, Wang Z, Kong D, Sakr WA (2009) 3,3’-Diindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin down-regulation. Cancer Res 69:4468–4475

    Article  CAS  Google Scholar 

  27. Ali S, Banerjee S, Ahmad A, El-Raves BF, Philip PA, Sarkar FH (2008) Apoptosis-inducing effect of erlotinib is potentiated by 3,3’-diindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. Mol Cancer Ther 7:1708–1719

    Article  CAS  Google Scholar 

  28. Azmi AS, Ahmad A, Banerjee S, Rangnekar VM, Mohammad RM, Sarkar FH (2008) Chemoprevention of pancreatic cancer: characterization of Par-4 and its modulation by 3, 3’-dindolylmethane (DIM). Pharm Res 25:2117–2124

    Article  CAS  Google Scholar 

  29. Choi HJ, Lim do Y, Park JH (2009) Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3’-diindolylmethane in HT-29 human colon cancer cells. BMC Gastroenterol 9:39

    Google Scholar 

  30. Dalessandri KM, Firestone GL, Fitch MD, Bradlow HL, Bjeldanes LF (2004) Pilot study: effect of 3, 3’-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer 50:161–167

    Article  CAS  Google Scholar 

  31. Lee S, Park MK, Kim KH, Kim Y-S (2006) Pyridine, pyrrole and quinoline derivatives. WHO Food Addit Ser 54:195–233

    CAS  Google Scholar 

  32. Wang L-F, Lee JY, Chung J-O, Baik J-H, So S, Park S-K (2008) Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavor compounds. Food Chem 109:196–206

    Article  CAS  Google Scholar 

  33. Christoph N, Gessner M, Simat TJ, Hoenicke K (1999) Off-flavor compounds in wine and other food products formed by enzymatic, physical, and chemical degradation of tryptophan and its metabolites. Adv Exp Med Biol 467:659–669

    Article  CAS  Google Scholar 

  34. Rapp A, Versini G, Ullemeyer H (1993) 2-Aminoacetophenone: the causal agent of the untypical aging flavor (naphthalene note or hybrid note) of wine. Vitis 32:61–62

    CAS  Google Scholar 

  35. Hoenicke K, Simat TJ, Steinhart H, Christoph N, Gessner M, Kohler H-J (2002) “Untypical aging off-flavor” in wine: formation of 2-aminoacetophenone and evaluation of its influencing factors. Anal Chim Acta 458:29–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Barden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barden, T.C. (2010). Indoles: Industrial, Agricultural and Over-the-Counter Uses. In: Gribble, G. (eds) Heterocyclic Scaffolds II:. Topics in Heterocyclic Chemistry, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_48

Download citation

Publish with us

Policies and ethics