Skip to main content

Reactions of Indole with Nucleophiles

  • Chapter
  • First Online:
Heterocyclic Scaffolds II:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 26))

Abstract

While indole naturally tends to act as a nucleophile, there are numerous examples of nucleophilic substitutions as well as nucleophilic additions to the indole ring system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donskaya OV, Dolgushin GV, Lopyrev VA (2002) Vicarious nucleophilic substitution of hydrogen in nitro-substituted pyrroles, azoles, and benzannelated systems based on them. Chem Heterocycl Comp 38:371–384

    Article  CAS  Google Scholar 

  2. Ma̧kosza M, Wojciechowski K (2004) Nucleophilic substitution of hydrogen in heterocyclic chemistry. Chem Rev 104:2631–2666

    Article  Google Scholar 

  3. Somei M (2006) A Frontier in indole chemistry: 1-hydroxyindoles, 1-hydroxytryptamines, and 1-hydroxytryptophans. In: Topics in heterocyclic chemistry. Springer, Berlin/Heidelberg, pp 77–111

    Google Scholar 

  4. Joule JA (1999) Nucleophilic substitution of C-hydrogen on the five-membered ring of indoles. Prog Heterocycl Chem 11:45–65

    Article  CAS  Google Scholar 

  5. Szmuszkovicz J (1962) The reaction of 3-acylindoles with Grignard reagents. J Org Chem 27:511–514

    Article  Google Scholar 

  6. Bartoli G, Bosco M, Baccolini G (1980) Conjugate addition of RMgX to nitroarenes. A very useful method of alkylation of aromatic nitro compounds. J Org Chem 45:522–524

    Article  CAS  Google Scholar 

  7. Pelkey ET, Gribble GW (1999) Synthesis and reactions of N-protected 3-nitroindoles. Synthesis 1117–1122

    Google Scholar 

  8. Gribble GW, Saulnier MG, Pelkey ET, Kishbaugh TLS, Liu Y, Jiang J, Trujillo HA, Keavy DJ, Davis DA, Conway SC, Switzer FL, Roy S, Silva RA, Obaza-Nutaitis JA, Sibi MP, Moskalev NV, Barden TC, Chang L, Habeski WM, Pelcman B, Sponholtz Iii WR, Chau RW, Allison BD, Garaas SD, Sinha MS, McGowan MA, Reese MR, Harpp KS (2005) Novel indole chemistry in the synthesis of heterocycles. Curr Org Chem 9:1493–1519

    Article  CAS  Google Scholar 

  9. Bruni P, Giorgini E, Tommasi G, Greci L (1998) Nucleophilic attack on the nitrone tautomeric form of 1-hydroxy-2-phenylindole. Tetrahedron 54:5305–5314

    Article  CAS  Google Scholar 

  10. Nicolaou KC, Estrada AA, Freestone GC, Lee SH, Alvarez-Mico X (2007) New synthetic technology for the construction of N-hydroxyindoles and synthesis of nocathiacin I model systems. Tetrahedron 63:6088–6114

    Article  CAS  Google Scholar 

  11. Nicolaou KC, Sang HL, Estrada AA, Zak M (2005) Construction of substituted N-hydroxyindoles: synthesis of a nocathiacin I model system. Angew Chem Int Ed 44:3736–3740

    Article  CAS  Google Scholar 

  12. Myers AG, Herzon SB (2003) Identification of a novel Michael acceptor group for the reversible addition of oxygen- and sulfur-based nucleophiles. Synthesis and reactivity of the 3-alkylidene-3H-indole 1-oxide function of Avrainvillamide. J Am Chem Soc 125:12080–12081

    Article  CAS  Google Scholar 

  13. Feldman KS, Karatjas AG (2004) Extending Pummerer reaction chemistry. Application to the oxidative cyclization of tryptophan derivatives. Org Lett 6:2849–2852

    Article  CAS  Google Scholar 

  14. Feldman KS, Vidulova DB (2004) Extending Pummerer reaction chemistry. Application to the oxidative cyclization of indole derivatives. Org Lett 6:1869–1871

    Article  CAS  Google Scholar 

  15. Feldman KS, Vidulova DB (2004) Use of Stang’s reagent, PhI(CN)OTf, to promote Pummerer-like oxidative cyclization of 2-(phenylthio)indoles. Tetrahedron Lett 45:5035–5037

    Article  CAS  Google Scholar 

  16. Feldman KS, Skoumbourdis AP (2005) Extending Pummerer reaction chemistry. Synthesis of (±)-dibromophakellstatin by oxidative cyclization of an imidazole derivative. Organic Lett 7:929–931

    Article  CAS  Google Scholar 

  17. Feldman KS, Vidulova DB, Karatjas AG (2005) Extending Pummerer reaction chemistry. Development of a strategy for the regio- and stereoselective oxidative cyclization of 3-(ω-nucleophile)-tethered indoles. J Org Chem 70:6429–6440

    Article  CAS  Google Scholar 

  18. Feldman KS (2006) Modern Pummerer-type reactions. Tetrahedron 62:5003–5034

    Article  CAS  Google Scholar 

  19. Feldman KS, Karatjas AG (2006) Extending Pummerer reaction chemistry. Asymmetric synthesis of spirocyclic oxindoles via chiral indole-2-sulfoxides. Organic Lett 8:4137–4140

    Article  CAS  Google Scholar 

  20. Feldman KS, Nuriye AY (2009) Extending Pummerer reaction chemistry. Examination of the prospects for forming vicinal quaternary carbon centers. Tetrahedron Lett 50:1914–1916

    Article  CAS  Google Scholar 

  21. Marsili L, Palmieri A, Petrini M (2010) Reaction of carbon nucleophiles with alkylideneindazolium and alkylideneindolium ions generated from their 3-(1-arylsulfonylalkyl) indazole and indole precursors. Org Biomol Chem 8:706–712

    Article  CAS  Google Scholar 

  22. Khdour O, Skibo EB (2007) Chemistry of pyrrolo[1,2-a]indole- and pyrido[1,2-a]indole-based quinone methides. Mechanistic explanations for differences in cytostatic/cytotoxic properties. J Org Chem 72:8636–8647

    Article  CAS  Google Scholar 

  23. Wojciechowski K, Makosza M (1989) Reactions of organic anions. Part 158. Vicarious nucleophilic substitution of hydrogen in 5- and 6-nitroindole derivatives. Synthesis 106–109

    Google Scholar 

  24. Makosza M, Kwast E (1995) Vicarious nucleophilic substitution of hydrogen in nitro derivatives of five-membered heteroaromatic compounds. Tetrahedron 51:8339–8354

    Article  CAS  Google Scholar 

  25. Macor JE, Froman JT, Post RJ, Ryan K (1997) Synthesis and reactivity of pyrrolo[3,2-e]indole: removal of a N-BOM group from an unactivated indole. Tetrahedron Lett 38:1673–1676

    Article  CAS  Google Scholar 

  26. Yamada K, Yamada F, Shiraishi T, Tomioka S, Somei M (2009) Nucleophilic substitution reaction in indole chemistry: 1-methoxy-6-nitroindole-3-carbaldehyde as a versatile building block for 2,3,6-trisubstitute indoles. Heterocycles 77:971–982

    Article  CAS  Google Scholar 

  27. Rozhkov VV, Kuvshinov AM, Shevelev SA (2000) Transformations of 2-aryl-4, 6-dinitroindoles. Heterocycl Commun 6:525–528

    Article  CAS  Google Scholar 

  28. Bastrakov MA, Starosotnikov AM, Kachala VV, Nesterova EN, Shevelev SA (2007) Synthesis of 3-R-2-aryl-4, 6-dinitroindoles and specific features of their reactions with anionic nucleophiles. Russ Chem Bull 56:1603–1607

    Article  CAS  Google Scholar 

  29. Arnold RD, Nutter WM, Stepp WL (1959) Indoxyl acetate from indole. J Org Chem 24:117–118

    Article  CAS  Google Scholar 

  30. Roy S, Gribble GW (2005) A convenient synthesis of 2-nitroindoles. Tetrahedron Lett 46:1325–1328

    Article  CAS  Google Scholar 

  31. Coppola GM, Hardtmann GE (1977) Fused indoles. 1. Synthesis of the 1, 9-dihydrothiazino[3, 4-b]indole ring system. J Heterocycl Chem 14:1117–1118

    Article  CAS  Google Scholar 

  32. Comber MF, Moody CJ (1992) 2-Chloro-1-methoxymethylindole-3-carboxaldehyde: introduction of nucleophiles into the indole 2-position and an approach to the unusual TrpHis fragment of moroidin. Synthesis 731–733

    Google Scholar 

  33. Young SD, Amblard MC, Britcher SF, Grey VE, Tran LO, Lumma WC, Huff JR, Schleif WA, Emini EE et al (1995) 2-Heterocyclic indole-3-sulfones as inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 5:491–496

    Article  CAS  Google Scholar 

  34. Schkeryantz JM, Woo JCG, Danishefsky SJ (1995) Total synthesis of gypsetin. J Am Chem Soc 117:7025–7026

    Article  CAS  Google Scholar 

  35. Schkeryantz JM, Woo JCG, Siliphaivanh P, Depew KM, Danishefsky SJ (1999) Total synthesis of gypsetin, deoxybrevianamide E, brevianamide E, and tryprostatin B: novel constructions of 2, 3-disubstituted indoles. J Am Chem Soc 121:11964–11975

    Article  CAS  Google Scholar 

  36. Roy S, Gribble GW (2007) Nucleophilic amination of 2-iodo-3-nitro-1-(phenylsulfonyl)indole. Tetrahedron Lett 48:1003–1005

    Article  CAS  Google Scholar 

  37. Bastrakov MA, Starosotnikov AM, Shakhnes AK, Shevelev SA (2008) Functionalization of 4, 6-dinitro-2-phenylindole at position 7. Russ Chem Bull 57:1539–1542

    Article  CAS  Google Scholar 

  38. Barraja P, Diana P, Carbone A, Cirrincione G (2008) Nucleophilic reactions in the indole series: displacement of bromine under phase transfer catalysis. Tetrahedron 64:11625–11631

    Article  CAS  Google Scholar 

  39. Cooper MM, Hignett GJ, Newton RF, Joule JA, Harris M, Hinchley JD (1977) Nucleophilic substitutions at an indole beta-position. J Chem Soc Chem Commun 432–434

    Google Scholar 

  40. Cooper MM, Lovell JM, Joule JA (1996) Indole-beta-nucleophilic substitution. Part 9. Nitrogen nucleophiles. Syntheses of hydroxycryptolepine, cryptolepine, and quindoline. Tetrahedron Lett 37:4283–4286

    Article  CAS  Google Scholar 

  41. Pelkey ET, Barden TC, Gribble GW (1999) Nucleophilic addition reactions of 2-nitro-1-(phenylsulfonyl)indole. A new synthesis of 3-substituted-2-nitroindoles. Tetrahedron Lett 40:7615–7619

    Article  CAS  Google Scholar 

  42. Yamada F, Fukui Y, Shinmyo D, Somei M (1993) Introduction of nucleophiles or ethyl group to the indole nucleus through nucleophilic substitution and/or radical reactions of 1-methoxyindole-3- and -2-carboxaldehyde. Heterocycles 35:99–104

    Article  CAS  Google Scholar 

  43. Yamada K, Yamada F, Somei M (2002) Reactions of 1-methoxy-3-(2-nitrovinyl)indole with nucleophiles: an interesting solvent effect and a novel preparation of 3-substituted 1-methoxyindoles. Heterocycles 57:1231–1234

    Article  CAS  Google Scholar 

  44. Alford PE, Kishbaugh T, Gribble GW (2010) Nucleophilic addition of hetaryllithium compounds to 3-nitro-1-(phenylsulfonyl)indole: synthesis of tetracyclic thieno[3, 2-c]-g-carbolines. Heterocycles 80:831–840

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. S. Kishbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kishbaugh, T.L.S. (2010). Reactions of Indole with Nucleophiles. In: Gribble, G. (eds) Heterocyclic Scaffolds II:. Topics in Heterocyclic Chemistry, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_35

Download citation

Publish with us

Policies and ethics