Skip to main content

GD: A Measure Based on Information Theory for Attribute Selection

  • Conference paper
  • First Online:
Book cover Progress in Artificial Intelligence — IBERAMIA 98 (IBERAMIA 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1484))

Included in the following conference series:

Abstract

In this work a measure called GD is presented for attribute selection. This measure is defined between an attribute set and a class and corresponds to a generalization of the Mántaras distance that allows to detect the interdependencies between attributes. In the same way, the proposed measure allows to order the attributes by importance in the definition of the concept. This measure does not exhibit a noticeable bias in favor of attributes with many values. The quality of the selected attributes using the GD measure is tested by means of different comparisons with other two attribute selection methods over 19 datasets.

This work was supported in part the Spanish Ministry of Education under project TAP95-0288

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. David W. Aha and Richard L. Bankert. Feature selection for case-based classification of cloud types: An empirical comparison. In Proc. of the 1994 AAAI Workshop on Case-Based Reasoning, pages 106–112. AAAI Press, 1994. 124

    Google Scholar 

  2. David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms. Machine Learning, 6:37–66, 1991. 130

    Google Scholar 

  3. H. Almuallim and T.G. Dietterich. Learning with many irrelevant features. In Proc. of the Ninth National Conference on Artificial Intelligence, pages 547–552. AAAI Press, 1991. 124

    Google Scholar 

  4. Michael R. Anderberg. Cluster Analysis for Applications. Academic Press Inc., New York, 1973. 129

    MATH  Google Scholar 

  5. Rich Caruana and Dayne Freitag. Greedy attribute selection. In Proc. of the 11th International Machine Learning Conference, pages 28–36, New Brunswick, NJ, 1994. Morgan Kaufmann. 130

    Google Scholar 

  6. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons Inc., 1991. 126

    Google Scholar 

  7. Walter Daelemans and Antal van den Bosch. Generalization performance of backpropagation learning on a syllabification task. In Proc. of the Third Twente Workshop on Language Technology, pages 27–38, 1992. 125

    Google Scholar 

  8. P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs, New Jersey, 1982. 131

    MATH  Google Scholar 

  9. R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Willey and Sons, 1973. 128, 130

    Google Scholar 

  10. G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In W. William and Haym Hirsh, editors, Procs. of the Eleventh International Conference on Machine Learning, pages 121–129. Morgan Kaufmann, San Francisco, CA, 1994. 124

    Google Scholar 

  11. Kenji Kira and Larry A. Rendell. The feature selection problem: Traditional methods and a new algorithm. In Proc. of the 10th National Conf. on Artificial Intelligence, pages 129–134, 1992. 124

    Google Scholar 

  12. Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1–2):273–324, December 1997. 130

    Article  MATH  Google Scholar 

  13. Ron Kohavi, Dan Sommerfield, and James Dougherty. Data mining using MLC++: A machine learning library in C++. In Tools with Artificial Intelligence, pages 234–245. IEEE Computer Society Press, 1996. Received the best paper award. 130

    Google Scholar 

  14. Igor Kononenko. Estimating attributes: Analysis and extensions of relief. In F. Bergadano and L. de Raedt, editors, Machine Learning: ECML-94, pages 171–182, Berlin, 1994. Springer. 130

    Google Scholar 

  15. Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285–318, 1988. 124

    Google Scholar 

  16. R. Lopez de Mántaras. A distance-based attribute selection measure for decision tree induction. Machine Learning, 6:81–92, 1991. 125, 126

    Article  Google Scholar 

  17. Javier Lorenzo and Mario Hernández. Sobre el uso de conceptos de teoráa de la información en la selección de características. Technical Report GIAS-TR-006, Grupo de Inteligencia Artificial y Sistemas, Dpto. de Informática y Sistemas, Univ. de Las Palmas de Gran Canaria, 1996. 127, 129

    Google Scholar 

  18. David J.C. MacKay. Information theory, inference and learning algorithms. http://wol.ra.phy.cam.ac.uk/mackay/itprnn/book.ps.gz, 1997. 126

  19. C. J. Merz and P.M. Murphy. UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science., 1996. 130

    Google Scholar 

  20. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986. 125, 130

    Google Scholar 

  21. M Scherf and W. Brauer. Feature selection by means of a feature weighting approach. Technical Report FKI-221-97, Institut fur Informatik, Technische Universitat Munchen, 1997. 125

    Google Scholar 

  22. Dietrich Wettschereck and David W. Aha. Weighting features. In Proc. of the First Int. Conference on Case-Based Reasoning, pages 347–358, 1995. 130

    Google Scholar 

  23. Dietrich Wettschereck and Thomas G. Dieterich. An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms. Machine Learning, pages 5–27, 1995. 125

    Google Scholar 

  24. Allan P. White and Wei Zhong Liu. Bias in information-based measures in decision tree induction. Machine Learning, 15:321–329, 1994. 125, 129

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorenzo, J., Hernández, M., Méndez, J. (1998). GD: A Measure Based on Information Theory for Attribute Selection. In: Coelho, H. (eds) Progress in Artificial Intelligence — IBERAMIA 98. IBERAMIA 1998. Lecture Notes in Computer Science(), vol 1484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49795-1_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-49795-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64992-2

  • Online ISBN: 978-3-540-49795-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics