Skip to main content

Computing f(A)b for Matrix Functions f

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 47))

Summary

For matrix function f we investigate how to compute a matrix-vector product f(A)b without explicitly computing f(A). A general method is described that applies quadrature to the matrix version of the Cauchy integral theorem. Methods specific to the logarithm, based on quadrature, and fractional matrix powers, based on solution of an ordinary differential equation initial value problem, are also presented

This work was supported by Engineering and Physical Sciences Research Council grant GR/R22612.

Supported by a Royal Society-Wolfson Research Merit Award.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. J. Allen, J. Baglama, and S. K. Boyd. Numerical approximation of the product of the square root of a matrix with a vector. Linear Algebra Appl., 310: 167–181, 2000.

    Article  MathSciNet  Google Scholar 

  2. Z. Bai, M. Fahey, and G. H. Golub. Some large-scale matrix computation problems. J. Comput. Appl. Math., 74:71–89, 1996.

    Article  MathSciNet  Google Scholar 

  3. S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub. Approximating the logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl., 22(4):1112–1125, 2001.

    Article  MathSciNet  Google Scholar 

  4. P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, London, second edition, 1984. ISBN 0-12-206360-0. xiv+612 pp.

    Google Scholar 

  5. L. Dieci, B. Morini, and A. Papini. Computational techniques for real logarithms of matrices. SIAM J. Matrix Anal. Appl., 17(3):570–593, 1996.

    Article  MathSciNet  Google Scholar 

  6. R. G. Edwards, U. M. Heller, and R. Narayanan. Chiral fermions on the lattice. Parallel Comput., 25:1395–1407, 1999.

    Article  MathSciNet  Google Scholar 

  7. W. Gander and W. Gautschi. Adaptive quadrature—revisited. BIT, 40(1): 84–101, 2000.

    Article  MathSciNet  Google Scholar 

  8. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, USA, third edition, 1996. ISBN 0-8018-5413-X (hardback), 0-8018-5414-8 (paperback). xxvii+694 pp.

    Google Scholar 

  9. D. J. Higham and N. J. Higham. MATLAB Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 2005.

    Google Scholar 

  10. N. J. Higham. Evaluating Padè approximants of the matrix logarithm. SIAM J. Matrix Anal. Appl., 22(4):1126–1135, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991. ISBN 0-521-30587-X. viii+607 pp.

    Google Scholar 

  12. A.-K. Kassam and L. N. Trefethen. Fourth-order time stepping for stiff PDEs. To appear in SIAM J. Sci. Comput., 2005.

    Google Scholar 

  13. C. S. Kenney and A. J. Laub. Padé error estimates for the logarithm of a matrix. Internat. J. Control, 50(3):707–730, 1989.

    MathSciNet  Google Scholar 

  14. Y. Y. Lu. Computing the logarithm of a symmetric positive definite matrix. Appl. Numer. Math., 26: 483–496, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. N. Lyness. When not to use an automatic quadrature routine. SIAM Rev., 25(1):63–87, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of Non-Normal Matrices and Operators. Princeton University Press, Princeton, NJ, USA, 2005.

    Google Scholar 

  17. J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and H. A. van der Vorst. Numerical methods for the QCD overlap operator. I. Sign-function and error bounds. Computer Physics Communications, 146: 203–224, 2002.

    Google Scholar 

  18. H. A. van der Vorst. Solution of f(A)x = b with projection methods for the matrix A. In A. Frommer, T. Lippert, B. Medeke, and K. Schilling, editors, Numerical Challenges in Lattice Quantum Chromodynamics, volume 15 of Lecture Notes in Computational Science and Engineering, pages 18–28. Springer-Verlag, Berlin, 2000.

    Google Scholar 

  19. A. Wouk. Integral representation of the logarithm of matrices and operators. J. Math. Anal. and Appl., 11:131–138, 1965.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davies, P.I., Higham, N.J. (2005). Computing f(A)b for Matrix Functions f. In: Bori~i, A., Frommer, A., Joó, B., Kennedy, A., Pendleton, B. (eds) QCD and Numerical Analysis III. Lecture Notes in Computational Science and Engineering, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28504-0_2

Download citation

Publish with us

Policies and ethics