Skip to main content

Ikaros-Family Proteins: In Search of Molecular Functions During Lymphocyte Development

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 290))

Abstract

The regulatory steps that lead to the differentiation of hematopoietic cells from a multipotential stem cell remain largely unknown. A beginning to the understanding of these steps has come from the study of DNA-binding proteins that are thought to regulate the expression of genes required for specific developmental events. Ikaros is the founding member of a small family of DNA-binding proteins required for lymphocyte development, but the members of this family differ from other key regulators of lymphopoiesis in that direct target genes have not been conclusively identified, and reasonable support has been presented for only a few potential targets. Therefore, the molecular mechanisms that Ikaros uses for regulating lymphocyte development remain largely unknown. Current data suggest that, in some instances, Ikaros may function as a typical transcription factor. However, recent results suggest that it may function more broadly, perhaps in the formation of silent and active chromatin structures. In this review, our current knowledge of the molecular functions of Ikaros will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avitahl N, Winandy S, Friedrich C, Jones B, Yimin G, Georgopoulos K (1999) Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 10:333–343

    Article  PubMed  CAS  Google Scholar 

  • Bernat RL, Borisy GG, Rothfield NF, Earnshaw WC (1990) Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J Cell Biol 111:1519–1533

    Article  PubMed  CAS  Google Scholar 

  • Bernat RL, Delannoy MR, Rothfield NF, Earnshaw WC (1991) Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell 66:1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3:207–217

    Article  PubMed  CAS  Google Scholar 

  • Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P (1991) A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 19:1179–1182

    PubMed  CAS  Google Scholar 

  • Clevers HC, Grosschedl R (1996) Transcriptional control of lymphoid development: lessons from gene targeting. Immunol Today 17:336–343

    Article  PubMed  CAS  Google Scholar 

  • Clevers HC, Oosterwegel MA, Georgopoulos K (1993) Transcription factors in early T-cell development. Immunol Today 14:591–596

    Article  PubMed  CAS  Google Scholar 

  • Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST (2000) Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 14:2146–2160

    Article  PubMed  CAS  Google Scholar 

  • Cortes M, Wong E, Koipally J, Georgopoulos K (1999) Control of lymphocyte development by the Ikaros gene family. Curr Op Immunol 11:167–171

    Article  CAS  Google Scholar 

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14:200–204

    Article  PubMed  CAS  Google Scholar 

  • Dumortier A, Kirstetter P, Kastner P, Chan S (2003) Ikaros regulates neutrophil differentiation. Blood 101:2219–2226

    Article  PubMed  CAS  Google Scholar 

  • Ernst P, Hahm K, Smale ST (1993) Both LyF-1 and an Ets protein interact with a critical promoter element in the murine terminal transferase gene. Mol Cell Biol 13:2982–2992

    PubMed  CAS  Google Scholar 

  • Ernst P, Hahm K, Trinh L, Davis JN, Roussel MF, Turck CW, Smale ST (1996) A potential role for Elf-1 in terminal transferase gene regulation. Mol Cell Biol 16:6121–6131

    PubMed  CAS  Google Scholar 

  • Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139:1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos K (1997) Transcription factors required for lymphoid lineage commitment. Curr Opin Immunol 9:222–227

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos K (2002) Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nature Rev Immunol 2:162–174

    Article  CAS  Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143–156

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos K, Moore DD, Derfler B (1992) Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258:808–812

    PubMed  CAS  Google Scholar 

  • Georgopoulos K, Winandy S, Avitahl N (1997) The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol 15:155–176

    Article  PubMed  CAS  Google Scholar 

  • Glimcher LH, Singh H (1999) Transcription factors in lymphocyte development—T B cells get together. Cell 96:13–23

    Article  PubMed  CAS  Google Scholar 

  • Hahm K, Cobb BS, McCarty AS, Brown KE, Klug CA, Lee R, Akashi K, Weissman IL, Fisher AG, Smale ST (1998) Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev 12:782–796

    PubMed  CAS  Google Scholar 

  • Hahm K, Ernst P, Lo K, Kim GS, Turck C, Smale ST (1994) The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol 14:7111–7123

    PubMed  CAS  Google Scholar 

  • Hansen JD, Strassburger P, Du Pasquier L (1997) Conservation of a master hematopoietic switch gene during vertebrate evolution: isolation and characterization of Ikaros from teleost and amphibian species. Eur J Immunol 27:3049–3058

    PubMed  CAS  Google Scholar 

  • Harker N, Naito T, Cortes M, Hostert A, Hirschberg S, Tolaini M, Roderick K, Georgopoulos K, Kioussis D (2002) The CD8alpha gene locus is regulated by the Ikaros family of proteins. Mol Cell 10:1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Honma Y, Kiyosawa H, Mori T, Oguri A, Nikaido T, Kanazawa K, Tojo M, Takeda J, Tanno, Y, Yokoya S et al. (1999) Eos: a novel member of the Ikaros gene family expressed predominantly in the developing nervous system. FEBS Letters 447:76–80

    Article  PubMed  CAS  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496

    Article  PubMed  CAS  Google Scholar 

  • Kelley CM, Ikeda T, Koipally J, Avitahl N, Wu L, Georgopoulos K, Morgan BA (1998) Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol 8:508–515

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, Winandy S, Viel A, Sawyer A, Ikeda T et al. (1999) Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10:345–355

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B Tigger too. Trends Genet 13:141–145

    Article  PubMed  CAS  Google Scholar 

  • Kirstetter P, Thomas M, Dierich A, Kastner P, Chan S (2002) Ikaros is critical for B cell differentiation and function. Eur J Immunol 32:720–730

    Article  PubMed  CAS  Google Scholar 

  • Klug CA, Morrison SJ, Masek M, Hahm K, Smale ST, Weissman IL (1998) Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, Ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci USA 95:657–662

    Article  PubMed  CAS  Google Scholar 

  • Koipally J, Renold A, Kim J, Georgopoulos K (1999) Repression by Ikaros Aiolos is mediated through histone deacetylase complexes. EMBO J 18:3090–3100

    Article  PubMed  CAS  Google Scholar 

  • Koipally J, Georgopoulos K (2000) Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 275:19594–19602

    Article  PubMed  CAS  Google Scholar 

  • Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280:547–553

    Article  PubMed  CAS  Google Scholar 

  • Liippo J, Lassila O (1997) Avian Ikaros gene is expressed early in embryogenesis. Eur J Immunol 27:1853–1857

    PubMed  CAS  Google Scholar 

  • Lo K, Landau NR, Smale ST (1991) LyF-1, a transcriptional regulator that interacts with a novel class of promoters for lymphocyte-specific genes. Mol Cell Biol 11:5229–5243

    PubMed  CAS  Google Scholar 

  • Masumoto H, Sugimoto K, Okazaki T (1989) Alphoid satellite DNA is tightly associated with centromere antigens in human chromosomes throughout the cell cycle. Exp Cell Res 181:181–196

    Article  PubMed  CAS  Google Scholar 

  • McCarty AS, Kleiger G, Eisenberg D, Smale ST (2003) Selective dimerization of a C2H2 zinc finger subfamily. Mol Cell 11:459–470

    Article  PubMed  CAS  Google Scholar 

  • MolnQr A, Georgopoulos K (1994) The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 14:8292–8303

    Google Scholar 

  • MolnQr A, Wu P, Largespada DA, Vortkamp A, Scherer S, Copeland NG, Jenkins NA, Bruns G, Georgopoulos K (1996) The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA binding proteins, highly conserved in human and mouse. J Immunol 156:585–592

    Google Scholar 

  • Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, Wu P, Neben S, Georgopoulos K (1997) Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J 16:2004–2013

    Article  PubMed  CAS  Google Scholar 

  • Murphy TD, Karpen GH (1998) Centromeres take flight: alpha satellite and the quest for the human centromere. Cell 93:317–320

    Article  PubMed  CAS  Google Scholar 

  • Nichogiannopoulou A, Trevisan M, Friedrich C, Georgopoulos K (1998) Ikaros in hemopoietic lineage determination and homeostasis. Semin Immunol 10:119–125

    Article  PubMed  CAS  Google Scholar 

  • Nichogiannopoulou A, Trevisan M, Neben S, Friedrich C, Georgopoulos K (1999) Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med 190:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • O'Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14:3946–3957

    PubMed  Google Scholar 

  • Orkin SH (1995) Hematopoiesis: how does it happen? Curr Opin Cell Biol 7:870–877

    Article  PubMed  CAS  Google Scholar 

  • Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF, Nelms KA, Smale ST, Goodnow CC (2003) Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19:131–144

    Article  PubMed  CAS  Google Scholar 

  • Perdomo J, Holmes M, Chong B, Crossley M (2000) Eos and Pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem 275:38347–38354

    Article  PubMed  CAS  Google Scholar 

  • Platero JS, Csink AK, Quintanilla A, Henikoff S (1998) Changes in chromosomal localization of heterochromatin-binding proteins during the cell cycle in Drosophila. J Cell Biol 140:1297–1306

    Article  PubMed  CAS  Google Scholar 

  • Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270:1591–1594

    PubMed  CAS  Google Scholar 

  • Poux S, Kostic C, Pirrotta V (1996) Hunchback-independent silencing of late Ubx enhancers by a Polycomb Group Response Element. EMBO J 15:4713–4722

    PubMed  CAS  Google Scholar 

  • Sabbattini P, Lundgren M, Georgiou A, Chow C, Warnes G, Dillon N (2001) Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J 20:2812–2822

    Article  PubMed  CAS  Google Scholar 

  • Schardin M, Cremer T, Hager HD, Lang M (1985) Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet 71:281–287

    Article  PubMed  CAS  Google Scholar 

  • Shelby RD, Vafa O, Sullivan KF (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136:501–513

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Wu L (1996) Early T lymphocyte progenitors. Annu Rev Immunol 14:29–47

    Article  PubMed  CAS  Google Scholar 

  • Singh H (1996) Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr Opin Immunol 8:160–165

    Article  PubMed  CAS  Google Scholar 

  • Smale ST, Fisher AG (2002) Chromatin structure and gene activation in the immune system. Ann Rev Immunol 20:427–462

    Article  CAS  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A, Sensel M, Reaman GH, Uckun FM (1999) Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci 96:680–685

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Liu A, Georgopoulos K (1996) Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 15:5358–5369

    PubMed  CAS  Google Scholar 

  • Ting CN, Olson MC, Barton KP, Leiden JM (1996) Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384:474–478

    Article  PubMed  CAS  Google Scholar 

  • Tomkiel J, Cooke CA, Saitoh H, Bernat RL, Earnshaw WC (1994) CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125:531–545

    Article  PubMed  CAS  Google Scholar 

  • Trinh LA, Ferrini R, Cobb BS, Weinmann AS, Hahm K, Ernst P, Garraway IP, Merkenschlager M, Smale ST (2001) Down-regulation of TDT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 15:1817–1832

    Article  PubMed  CAS  Google Scholar 

  • Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7:897–900

    Article  PubMed  CAS  Google Scholar 

  • Vissel B, Choo KH (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5:407–414

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Avitahl N, Cariappa A, Friedrich C, Ikeda T, Renold A, Andrikopoulos K, Liang L, Pillai S, Morgan B et al. (1998) Aiolos Regulates B cell activation and maturation to effector state. Immunity 9:543–553

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5:537–549

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, Sibon OC, Cremers FF, van Driel R, de Jong L (1996) Ultrastructural localization of active genes in nuclei of A431 cells. J Cell Biochem 62:10–18

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF et al. (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Article  PubMed  CAS  Google Scholar 

  • Westman BJ, Perdomo, J, Sunde M, Crossley M, Mackay JP (2003) The C-terminal domain of Eos forms a high order complex in solution. J Biol Chem 278:42419–42426

    Article  PubMed  CAS  Google Scholar 

  • Wiens GR, Sorger PK (1998) Centromeric chromatin and epigenetic effects in kinetochore assembly. Cell 93:313–316

    Article  PubMed  CAS  Google Scholar 

  • Winandy S, Wu P, Georgopoulos K (1995) A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83:289–299

    Article  PubMed  CAS  Google Scholar 

  • Winandy S, Wu L, Wang JH, Georgopoulos K (1999) Pre-T cell receptor (TCR) TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 190:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Wong AK, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucleic Acids Res 16:11645–11661

    PubMed  CAS  Google Scholar 

  • Wu L, Nichogiannopoulou A, Shortman K, Georgopoulos K (1997) Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 7:483–492

    Article  PubMed  CAS  Google Scholar 

  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254

    PubMed  CAS  Google Scholar 

  • Zhang CC, Bienz M (1992) Segmental determination in Drosophila conferred by hunchback (hb), a repressor of the homeotic gene Ultrabithorax (Ubx). Proc Natl Acad Sci U S A 89:7511–7515

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Cobb, B.S., Smale, S.T. (2005). Ikaros-Family Proteins: In Search of Molecular Functions During Lymphocyte Development. In: Singh, H., Grosschedl, R. (eds) Molecular Analysis of B Lymphocyte Development and Activation. Current Topics in Microbiology and Immunology, vol 290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26363-2_3

Download citation

Publish with us

Policies and ethics