Skip to main content

Carbenes from Ionic Liquids

  • Chapter
  • First Online:
Electronic Effects in Organic Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 351))

Abstract

In the last decade an explosive development has been observed in the fields of both ionic liquids (ILs) as potential chemically inert solvents with many possible technical applications, and N-heterocyclic carbenes (NHCs) as catalysts with superb performance. Since the cations of many ILs can be deprotonated by strong bases yielding NHCs, this two fields are inherently connected. It has only recently been recognized that some of the commonly used basic anions of the ILs (such as acetate) are able to deprotonate azolium cations. While the resulting NHC could clearly be observed in the vapor phase, in the liquid – where the mutual electrostatic interactions within the ion network stabilize the ion pairs – the neutral NHC cannot be detected by commonly used analytical techniques; however, from these ionic liquids NHCs can be trapped, e.g., by complex formation, or more importantly these ILs can be directly used as catalysts, since the NHC content is sufficiently large for these applications. Apart from imidazole-2-ylidenes, the formation of other highly reactive neutral species (“abnormal carbenes,” 2-alkylideneimidazoles, pyridine-ylidenes or pyridinium-ylides) is feasible in highly basic ionic liquids. The cross-fertilizing overlap between the two fields may provide access to a great advance in both areas, and we give an overview here on the results published so far, and also on the remaining possibilities and challenges in the concept of “carbenes from ionic liquids.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that while the first thiazole-2-ylidene derivative was isolated in 1997 – see [44] – its catalytic activity was shown by Breslow as early as 1958 – see [11].

  2. 2.

    Related to the basicity it should be noted that the nucleophilicity of the acetate anion in [C2C1Im][OAc] is sufficiently large to esterify alkyl halides directly [102].

  3. 3.

    It should be noted that a 5 % aqueous solution of [C4C1Im][OH] has been produced [143], and has been used for the combinatorial synthesis of other ILs.

  4. 4.

    Interestingly, in previous literature data for the significantly less basic [Tf2N] anion considerable reduction in hydrogen bonding has been observed upon methylation at the position 2 of 1,3-dialkylimidazolium derivatives [154156].

Abbreviations

[C2C1Im][CH3SO3]:

1-Ethyl-3-methylimidazolium methanesulfonate

[C2C1Im][OAc]:

1-Ethyl-3-methylimidazolium acetate

[C2C2Im][OAc]:

1,3-Diethylimidazolium acetate

[CnC1Im][OAc]:

1-Alkyl-3-methylimidazolium acetate

[CnC1Im][OH]:

1-Alkyl-3-methylimidazolium hydroxide

[CnCmIm][HCO3]:

1,3-Dialkylimidazolium hydrogen carbonate

DFT:

Density functional theory

DIPP:

2,6-Diisopropylphenyl group

IL:

Ionic liquid

Im-IL:

Imidazolium-based ionic liquid

NHC:

N-Heterocyclic carbene

Tf2N :

Bis(trifluoromethanesulfonyl)imide

TfO :

Triflate

References

  1. Hallett JP, Welton T (2011) Chem Rev 111:3508–3576

    CAS  Google Scholar 

  2. Rogers RD, Seddon KR, Volkov S (2002) Green industrial applications of ionic liquids. Kluwer Academic, Dordrecht

    Google Scholar 

  3. Wasserscheid P, Welton T (2007) Ionic liquids in synthesis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  4. Díez-González S (2011) N-Heterocyclic carbenes: from laboratory curiosities to efficient synthetic tools. Royal Society of Chemistry, Cambridge

    Google Scholar 

  5. Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Chem Rev 100:39–92

    CAS  Google Scholar 

  6. Arduengo AJ, Bertrand G (2009) Chem Rev 109:3209–3210

    CAS  Google Scholar 

  7. Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122–3172

    CAS  Google Scholar 

  8. Melaimi M, Soleilhavoup M, Bertrand G (2010) Angew Chem Int Ed 49:8810–8849

    CAS  Google Scholar 

  9. Droge T, Glorius F (2010) Angew Chem Int Ed 49:6940–6952

    Google Scholar 

  10. Martin D, Melaimi M, Soleilhavoup M, Bertrand G (2011) Organometallics 30:5304–5313

    CAS  Google Scholar 

  11. Breslow R (1958) J Am Chem Soc 80:3719–3726

    CAS  Google Scholar 

  12. Canal JP, Ramnial T, Dickie DA, Clyburne JAC (2006) Chem Commun 42:1809–1818

    Google Scholar 

  13. Dupont J, Spencer J (2004) Angew Chem Int Ed 43:5296–5297

    CAS  Google Scholar 

  14. Chowdhury S, Mohan RS, Scott JL (2007) Tetrahedron 63:2363–2389

    CAS  Google Scholar 

  15. Aggarwal VK, Emme I, Mereu A (2002) Chem Commun 1612–1613

    Google Scholar 

  16. Sowmiah S, Srinivasadesikan V, Tseng M-C, Chu Y-H (2009) Molecules 14:3780–3813

    CAS  Google Scholar 

  17. Gorodetsky B, Ramnial T, Branda NR, Clyburne JAC (2004) Chem Commun 40:1972–1973

    Google Scholar 

  18. Maase H, Massonne K (2005) WO 2,005,019,183

    Google Scholar 

  19. Marion N, Díez-González S, Nolan SP (2007) Angew Chem Int Ed 46:2988–3000

    CAS  Google Scholar 

  20. Enders D, Balensiefer T (2004) Acc Chem Res 37:534–541

    CAS  Google Scholar 

  21. Enders D, Niemeier O, Henseler A (2007) Chem Rev 107:5606–5655

    CAS  Google Scholar 

  22. Moore J, Rovis T (2009) Top Curr Chem 291:118–144

    Google Scholar 

  23. Cavallo L, Correa A, Costabile C, Jacobsen H (2005) J Organomet Chem 690:5407–5413

    CAS  Google Scholar 

  24. Arnold PL, Pearson S (2007) Coord Chem Rev 251:596–609

    CAS  Google Scholar 

  25. Frenking G, Sol M, Vyboishchikov SF (2005) J Organomet Chem 690:6178–6204

    CAS  Google Scholar 

  26. Diaz-Requejo MM, Perez PJ (2005) J Organomet Chem 690:5441–5450

    CAS  Google Scholar 

  27. Crabtree RH (2005) J Organomet Chem 690:5451–5457

    CAS  Google Scholar 

  28. Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612–3676

    Google Scholar 

  29. Schuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445–3478

    CAS  Google Scholar 

  30. Hollóczki O, Gerhard D, Massone K, Szarvas L, Németh B, Veszprémi T, Nyulászi L (2010) New J Chem 34:3004–3009

    Google Scholar 

  31. Vignolle J, Cattoen X, Bourissou D (2009) Chem Rev 109:3333–3384

    CAS  Google Scholar 

  32. Yamaguchi Y, Sherrill CD, Schaefer HF (1996) J Phys Chem 100:7911–7918

    CAS  Google Scholar 

  33. Gronert S, Keeffe JR, O'Ferrall RAM (2011) J Am Chem Soc 133:3381–3389

    CAS  Google Scholar 

  34. Gronert S, Keeffe JR, O'Ferrall RAM (2011) J Am Chem Soc 133:11817–11818

    CAS  Google Scholar 

  35. Forró A, Veszprémi T, Nyulászi L (2000) Phys Chem Chem Phys 2:3127–3129

    Google Scholar 

  36. Hollóczki O, Kelemen Z, Nyulászi L (2012) J Org Chem 77:6014–6022

    Google Scholar 

  37. Arduengo AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    CAS  Google Scholar 

  38. Boehme C, Frenking G (1996) J Am Chem Soc 118:2039–2046

    CAS  Google Scholar 

  39. Heinemann C, Muller T, Apeloig Y, Schwartz H (1996) J Am Chem Soc 118:2023–2038

    CAS  Google Scholar 

  40. Schleyer PvR, Pühlhofer F (2002) Org Lett 4:2873–2876

    CAS  Google Scholar 

  41. Hollóczki O, Nyulászi L (2008) J Org Chem 73:4794–4799

    Google Scholar 

  42. Hollóczki O, Nyulászi L (2011) Org Biomol Chem 9:2634–2640

    Google Scholar 

  43. Enders D, Breuer K, Raabe G, Runsink J, Teles H, Melder J-P, Ebel K, Brode S (1995) Angew Chem Int Ed 34:1021–1023

    CAS  Google Scholar 

  44. Arduengo AJI, Goerlich JR, Marshall WJ (1997) Liebigs Annalen 1997:365–374

    Google Scholar 

  45. Martin D, Soleilhavoup M, Bertrand G (2011) Chem Sci 2:389–399

    CAS  Google Scholar 

  46. Chiang P-C, Bode JW (2012) Science of synthesis: asymmetric organocatalysis, vol 1. Georg Thieme, Stuttgart

    Google Scholar 

  47. Kluger R, Tittmann K (2008) Chem Rev 108:1799–1833

    Google Scholar 

  48. Berg JM, Tymoczko J, Stryer L (2012) Biochemistry, 7th edn. Freedman, New York

    Google Scholar 

  49. Scheer M, Balázs G, Seitz A (2010) Chem Rev 110:4236–4256

    CAS  Google Scholar 

  50. Masuda JD, Schoeller WW, Donnadieu B, Bertrand G (2007) Angew Chem Int Ed 46:7052–7055

    CAS  Google Scholar 

  51. Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Science 316:439–441

    CAS  Google Scholar 

  52. Runyon JW, Steinhof O, Rasika Dias HV, Calabrese JC, Marshall WJ, Arduengo AJI (2011) Aust J Chem 64:1165–1172

    CAS  Google Scholar 

  53. Park S-W, Chun Y, Cho SJ, Lee S, Kim KS (2012) J Chem Theory Comput 8:1983–1988

    CAS  Google Scholar 

  54. Kuhn N, Steinmann M, Weyers G, Henkel GZ (1999) Naturforsch 54B:427–433

    Google Scholar 

  55. Delaude L (2009) Eur J Inorg Chem 1681–1699

    Google Scholar 

  56. Tommasi I, Sorrentino F (2006) Tetrahedron Lett 47:6453–6456

    CAS  Google Scholar 

  57. Wang Y, Robinson GH (2012) Dalton Trans 41:337–345

    CAS  Google Scholar 

  58. Wang Y, Robinson GH (2011) Inorg Chem 50:12326–12337

    CAS  Google Scholar 

  59. Dyker CA, Bertrand G (2008) Science 321:1050–1051

    CAS  Google Scholar 

  60. Xu L-W, Gao Y, Yin J-J, Li L, Xia C-G (2005) Tetrahedron Lett 46:5317–5320

    CAS  Google Scholar 

  61. Estanger J, Leveque J-M, Turgis R, Draye M (2007) Tetrahedron Lett 48:755–759

    Google Scholar 

  62. Davis JHJ, Forrester KJ (1999) Tetrahedron Lett 40:1621–1622

    CAS  Google Scholar 

  63. Nyce GW, Glauser T, Connor EF, Möck A, Waymouth RM, Hedrick JL (2003) J Am Chem Soc 125:3046–3056

    CAS  Google Scholar 

  64. Feroci M, Chiarotto I, Orsini M, Inesi A (2010) Chem Commun 46:4121

    CAS  Google Scholar 

  65. Orsini M, Chiarotto I, Elinson MN, Sotgiu G, Inesi A (2009) Electrochem Commun 11:1013

    CAS  Google Scholar 

  66. Feroci M, Chiarotto I, Orsini M, Sotgiu G, Inesi A (2008) Adv Synth Catal 350:1355

    CAS  Google Scholar 

  67. Holbrey JD, Reichert WM, Tkatchenko I, Bouajila E, Walter O, Tommasi I, Rogers RD (2003) Chem Commun 28–29

    Google Scholar 

  68. Voutchkova AM, Feliz M, Clot E, Eisenstein O, Crabtree RH (2007) J Am Chem Soc 129:12834–12846

    CAS  Google Scholar 

  69. Voutchkova AM, Appelhans LN, Chianese AR, Crabtree RH (2005) J Am Chem Soc 127:17624–17625

    CAS  Google Scholar 

  70. Fevre M, Coupillaud P, Miqueu K, Sotiropoulos J-M, Vignolle J, Taton D (2012) J Org Chem 77:10135–10144

    CAS  Google Scholar 

  71. Ogata K, Yamaguchi Y, Kashiwabara T, Ito T (2005) J Organomet Chem 690:5701–5709

    CAS  Google Scholar 

  72. Bonette F, Kato T, Destarac M, Mignani G, Cossío FP, Baceiredo A (2007) Angew Chem Int Ed 46:8632–8635

    Google Scholar 

  73. Hollóczki O, Nyulászi L (2009) Organometallics 28:4159–4164

    Google Scholar 

  74. Ghadwal RS, Sen SS, Roesky HW, Tavcar G, Merkel S, Stalke D (2009) Organometallics 28:6374–6377

    CAS  Google Scholar 

  75. Böttcher T, Bassil BS, Zhechkov L, Heine T, Röschenthaler G-V (2013) Chem Sci 4:77–83

    Google Scholar 

  76. Canac Y, Maaliki C, Abdellahab I, Chauvin R (2012) New J Chem 36:17–27

    CAS  Google Scholar 

  77. Kuhn N, Kratz T, Blaser D, Boese R (1995) Chem Ber 128:245–250

    CAS  Google Scholar 

  78. Weidner T, Baio JE, Mundstock A, Große C, Karthäuser S, Bruhn U, Siemeling C (2011) Aust J Chem 64:1177–1179

    CAS  Google Scholar 

  79. Chen H, Justes DR, Cooks RG (2005) Org Lett 7:3949–3952

    CAS  Google Scholar 

  80. Graham DC, Cavell KJ, Yates BF (2005) J Phys Org Chem 18:298–309

    CAS  Google Scholar 

  81. Magill A, Cavell KJ, Yates BF (2004) J Am Chem Soc 126:8717–8724

    CAS  Google Scholar 

  82. Sauers RR (1996) Tetrahedron Lett 37:149–152

    CAS  Google Scholar 

  83. Kim Y-J, Streitweiser A (2002) J Am Chem Soc 124:5757–5761

    CAS  Google Scholar 

  84. Amyes TL, Diver ST, Richard JP, Rivas FM, Tóth K (2004) J Am Chem Soc 126:4366–4374

    CAS  Google Scholar 

  85. Chu Y, Deng H, Cheng J-P (2007) J Org Chem 72:7790–7793

    CAS  Google Scholar 

  86. Alder RW, Allen PR, Williams SJ (1995) J Chem Soc Chem Commun 1267–1268

    Google Scholar 

  87. Bordwell FG (1988) Acc Chem Res 21:456–463

    CAS  Google Scholar 

  88. Song Z, Wang H, Xing L (2009) J Solut Chem 38:1139–1154

    CAS  Google Scholar 

  89. Turner EA, Pye CC, Singer RD (2003) J Phys Chem A 107:2277–2288

    CAS  Google Scholar 

  90. Haake P, Bausher LP, McNeal JP (1971) J Am Chem Soc 93:7045–7049

    CAS  Google Scholar 

  91. Giernoth R, Bankmann D (2006) Tetrahedron Lett 47:4293–4296

    CAS  Google Scholar 

  92. Wang Y, Xie Y, Abraham MY, Wei P, Schaefer HF III, Schleyer PvR, Robinson GH (2010) J Am Chem Soc 132:14370–14372

    CAS  Google Scholar 

  93. Aldeco-Perez E, Rosenthal AJ, Donnadieu B, Parameswaran P, Frenking G, Bertrand G (2009) Science 326:556–559

    CAS  Google Scholar 

  94. Arduengo AJI, Gamper SF, Tamm M, Calabrese JC, Davidson F, Craig HA (1995) J Am Chem Soc 117:572–573

    CAS  Google Scholar 

  95. Leites LA, Magdanurov GI, Bukalov SS, West R (2008) Mendeleev Commun 18:14–15

    CAS  Google Scholar 

  96. Hollóczki O, Terleczky P, Szieberth D, Mourgas G, Gudat D, Nyulászi L (2011) J Am Chem Soc 133:780–789

    Google Scholar 

  97. Denk KD, Rodezno JM, Gupta S, Lough A (2001) J Organomet Chem 617–618:242–253

    Google Scholar 

  98. Ranu BC, Banerjee S (2005) Org Lett 7:3049–3052

    CAS  Google Scholar 

  99. Cowan J, Clyburne JAC, Davidson MG, Harris RLW, Howard JAK, Küpper P, Leech MA, Richards SP (2002) Angew Chem Int Ed 41:1432–1434

    CAS  Google Scholar 

  100. Diedenhofen M, Klamt A, Marsh K, Schäfer A (2007) Phys Chem Chem Phys 9:4653–4656

    CAS  Google Scholar 

  101. MacFarlane DR, Pringle JM, Johansson KM, Forsyth SA, Forsyth M (2006) Chem Commun 42:1905–1917

    Google Scholar 

  102. Zhao B, Greiner L, Leitnerac W (2011) Chem Commun 47:2973–2975

    CAS  Google Scholar 

  103. Sun N, Maxim ML, Metlen A, Rogers RD (2011) ChemSusChem 4:65–73

    CAS  Google Scholar 

  104. Dhumal NR, Kim HJ, Kiefer J (2009) J Phys Chem A 113:10397–10404

    CAS  Google Scholar 

  105. Earle MJ, Esperanca JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR (2006) Nature 439:831–834

    CAS  Google Scholar 

  106. Strasser D, Goulay F, Kelkar MS, Maginn EJ, Leone SR (2007) J Phys Chem A 111:3191–3195

    CAS  Google Scholar 

  107. Leal JP, Esperanca JMSS, Minas da Piedade ME, Lopes JNC, Rebelo LPN, Seddon KR (2007) J Phys Chem A 111:6176–6182

    CAS  Google Scholar 

  108. Armstrong JP, Hurst C, Jones RG, Licence P, Lovelock KRJ, Satterly CJ, Villar-Garcia IJ (2007) Phys Chem Chem Phys 9:982–990

    CAS  Google Scholar 

  109. Greaves TL, Drummond CJ (2008) Chem Rev 108:206–237

    CAS  Google Scholar 

  110. Lui MY, Crowhurst L, Hallett JP, Hunt PA, Niedermeyer H, Welton T (2011) Chem Sci 2:1491–1496

    CAS  Google Scholar 

  111. Hallett JP, Liotta CL, Ranieri G, Welton T (2009) J Org Chem 74:1864–1868

    CAS  Google Scholar 

  112. Gurau G, Rodrguez H, Kelley SP, Janiczek P, Kalb RS, Rogers RD (2011) Angew Chem Int Ed 50:12024–12026

    CAS  Google Scholar 

  113. Brehm M, Weber H, Pensado AS, Stark A, Kirchner B (2012) Phys Chem Chem Phys 14:5030–5044

    CAS  Google Scholar 

  114. Yoshizawa-Fujita M, Johansson K, Newmann P, MacFarlane DR, Forsyth M (2006) Tetrahedron Lett 47:2755–2758

    CAS  Google Scholar 

  115. Jin C-M, Twamley B, Shreeve JM (2005) Organometallics 24:3020–3024

    CAS  Google Scholar 

  116. Rodriguez H, Gurau G, Holbrey JD, Rogers RD (2011) Chem Commun 47:3222–3224

    CAS  Google Scholar 

  117. Treble RG, Johnson KE, Tosh E (2006) Can J Chem 84:915–924

    Google Scholar 

  118. Jonansson KM, Izgorodina EI, MacFarlane DR, Seddon KR (2008) Phys Chem Chem Phys 10:2972–2978

    Google Scholar 

  119. Kelemen Z, Hollóczki O, Nagy J, Nyulászi L (2011) Org Biomol Chem 9:5362–5364

    CAS  Google Scholar 

  120. Gu L, Zhang Y (2010) J Am Chem Soc 132:914–915

    CAS  Google Scholar 

  121. Nair V, Varghese V, Paul RR, Jose A, Sinu CR, Menon RS (2010) Org Lett 12:2653–2655

    CAS  Google Scholar 

  122. Chiang P-C, Bode JW (2011) Org Lett 13:2422–2425

    CAS  Google Scholar 

  123. Park JH, Bhilare SV, Youn SW (2011) Org Lett 13:2228–2231

    CAS  Google Scholar 

  124. Maji B, Vedachalan S, Ge X, Cai S, Liu X-W (2011) J Org Chem 76:3016–3023

    CAS  Google Scholar 

  125. Chan A, Scheidt KA (2006) J Am Chem Soc 128:4558–4559

    CAS  Google Scholar 

  126. Liu D, Zhang Y, Chen EY-X (2012) Green Chem 14:2738–2746

    CAS  Google Scholar 

  127. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Science 316:1597–1600

    CAS  Google Scholar 

  128. Anderson JL, Dixon JK, Brennecke JF (2007) Acc Chem Res 40:1208–1216

    CAS  Google Scholar 

  129. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) J Am Chem Soc 126:5300–5308

    CAS  Google Scholar 

  130. Jutz F, Anderson J-M, Baiker A (2011) Chem Rev 111:322–353

    CAS  Google Scholar 

  131. Brennecke JF, Gurkan BE (2010) J Phys Chem Lett 1:3459–3464

    CAS  Google Scholar 

  132. Hollóczki O, Kelemen Z, Könczöl L, Szieberth D, Nyulászi L, Stark A, Kirchner B (2012) ChemPhysChem. doi:10.1002/cphc.201200970

    Google Scholar 

  133. Shiflett MB, Yokozeki A (2009) J Chem Eng Data 54:108–114

    CAS  Google Scholar 

  134. Barrosse-Antle LE, Compton RG (2009) Chem Commun 3744–3746

    Google Scholar 

  135. Duong HA, Tekavec TN, Aarif AM, Louie J (2004) Chem Commun 40:112–113

    Google Scholar 

  136. Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J (2009) J Org Chem 74:7935–7942

    Google Scholar 

  137. Wang C, Luo H, Luo X, Li H, Dai S (2010) Green Chem 12:2019–2023

    CAS  Google Scholar 

  138. Shiflett MB, Elliott BA, Lustig SR, Sabesan S, Kelkar MS, Yokozeki A (2012) Chemphyschem 13:1806–1817

    CAS  Google Scholar 

  139. Besnard M, Cabaco MI, Chávez FV, Pinaud N, Sebastiao PJ, Coutinho JAP, Mascetti J, Danten Y (2012) J Phys Chem A 116:4890–4901

    CAS  Google Scholar 

  140. Cabaco MI, Besnard M, Danten Y, Coutinho JAP (2012) J Phys Chem A 116:1605–1620

    CAS  Google Scholar 

  141. Besnard M, Cabaco MI, Chávez FV, Pinaud N, Sebastiao PJ, Coutinho JAP, Danten Y (2012) Chem Commun 48:1245–1247

    CAS  Google Scholar 

  142. Fevre M, Pinaud J, Leteneur A, Gnanou Y, Vignolle J, Taton D (2012) J Am Chem Soc 134:6776–6784

    CAS  Google Scholar 

  143. Himmler S, König A, Wasserscheid P (2007) Green Chem 9:935–942

    CAS  Google Scholar 

  144. Xu J-M, Wu Q, Zhang Q-Y, Zhang F (2007) Eur J Org Chem 1798–1802

    Google Scholar 

  145. Ranu BC, Jana R (2006) Eur J Org Chem 3767–3770

    Google Scholar 

  146. He X-L, Zhou Q, Li X-Y, van Kasteren JMN, Wang Y-Z (2012) Polym Degr Stab 97:145–148

    CAS  Google Scholar 

  147. Duclos JM, Haake P (1974) Biochemistry 13:5358–5362

    CAS  Google Scholar 

  148. Thomas OD, Soo KJWY, Peckham TJ, Kulkarni MP, Holdcroft S (2012) J Am Chem Soc 134:10753–10756

    CAS  Google Scholar 

  149. Handy ST, Okello M (2005) J Org Chem 70:1915–1918

    CAS  Google Scholar 

  150. Awad WH, Gilman JW, Nyden M Jr, Harris RH, Sutto TE, Callahan J, Trulove PC, DeLong HC, Fox DM (2004) Thermochim Acta 409:3–11

    CAS  Google Scholar 

  151. Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Angew Chem Int Ed 47:3210–3214

    Google Scholar 

  152. Biju AT, Padmanaban M, Wurz NE, Glorius F (2011) Angew Chem Int Ed 50:8412–8415

    CAS  Google Scholar 

  153. Knappke CEI, Arduengo AJ III, Jiao H, Neudcrfl J-M, von Wangelin AJ (2011) Synthesis 3784–3795

    Google Scholar 

  154. Peppel T, Roth C, Fumino K, Paschek D, Köckerling M, Ludwig R (2011) Angew Chem Int Ed 50:6661–6665

    CAS  Google Scholar 

  155. Wulf A, Fumino K, Ludwig R (2010) Angew Chem Int Ed 49:449–453

    CAS  Google Scholar 

  156. Fumino K, Peppel T, Geppert-Rybczyńska M, Zaitsau DH, Lehmann JK, Verevkin SP, Köckerling M, Ludwig R (2011) Phys Chem Chem Phys 13:14064–14075

    CAS  Google Scholar 

  157. Frison G, Sevin A (2002) J Chem Soc Perkin Trans 2:1692

    Google Scholar 

  158. Benassi R, Bertrarini C, Kleinpeter E, Taddei F (2000) J Mol Struct Theochem 498:217

    CAS  Google Scholar 

  159. Maji B, Horn M, Mayr H (2012) Angew Chem Int Ed 51:6231–6235

    CAS  Google Scholar 

  160. Al-Rafia MI, Malcolm AC, Liew SK, Ferguson MJ, McDonald R, Rivard E (2011) Chem Commun 47:6987–6989

    Google Scholar 

  161. Nyulászi L, Veszprémi T, Réffy JJ (1993) J Phys Chem 97:4011–4015

    Google Scholar 

  162. Mathey F, Nixon JF, Dillon K (1998) Phosphorus: the carbon copy. Wiley, New York

    Google Scholar 

  163. Arduengo AJ III, Carmalt CJ, Clyburne JAC, Cowley AH, Pyati R (1997) Chem Commun 981–982

    Google Scholar 

  164. Zoltewich JA, Helmick LS (1970) J Am Chem Soc 92:7547–7552

    Google Scholar 

  165. Owen JS, Labinger JA, Bercaw JE (2004) J Am Chem Soc 126:8247–8255

    CAS  Google Scholar 

  166. Piro NA, Owen JS, Bercaw JE (2004) Polyhedron 23:2797–2804

    CAS  Google Scholar 

  167. Alvarez E, Conejero S, Paneque M, Petronilho A, Poveda ML, Serrano O, Carmona E (2006) J Am Chem Soc 128:13060–13061

    CAS  Google Scholar 

  168. Kunz D (2007) Angew Chem Int Ed 46:3405–3408

    CAS  Google Scholar 

  169. Katritzky A (1997) Comprehensive heterocyclic chemistry 2, vol 5. Elsevier, Oxford

    Google Scholar 

  170. Jolly PI, Zhou S, Thomson DW, Garnier J, Parkinson JA, Tuttle T, Murphy JA (2012) Chem Sci 3:1675–1679

    CAS  Google Scholar 

  171. Grundemann S, Kovacevic A, Albrecht M, Faller JW, Crabtree RH (2001) Chem Commun 2274

    Google Scholar 

  172. Grundmann S, Kovacevic A, Albrecht M, Faller JW, Crabtree RH (2002) J Am Chem Soc 124:10473

    Google Scholar 

  173. Yuen AKL, Masters AF, Maschmeyer T (2013) Catal Today 200:9–16

    CAS  Google Scholar 

  174. Yu Y, Hua L, Zhu W, Shi Y, Cao T, Qiao Y, Hou Z (2013) Synth Commun 43:1287–1298

    CAS  Google Scholar 

  175. Quast H, Frankenfeld E (1965) Angew Chem Int Ed 4:691

    Google Scholar 

  176. Quast H, Schmitt E (1970) Liebigs Ann Chem 732:43–63

    Google Scholar 

  177. Quast E, Gelléri A (1975) Liebigs Ann Chem: 929–938

    Google Scholar 

  178. Quast E, Gelléri A (1975) Liebigs Ann Chem: 939–945

    Google Scholar 

  179. Rouch A, Castellan T, Fabing I, Saffon N, Rodrigez J, Constantieux T, Plaquevent JC, Génisson Y (2013) RSC Advances 3:413

    CAS  Google Scholar 

Download references

Acknowledgment

Funding from the New Széchenyi Plan TÁMOP-422B10-1-2010-0009 and OTKA K 105417, and financial support for Oldamur Hollóczki by the Alexander von Humboldt-Stiftung is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Nyulászi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hollóczki, O., Nyulászi, L. (2013). Carbenes from Ionic Liquids. In: Kirchner, B. (eds) Electronic Effects in Organic Chemistry. Topics in Current Chemistry, vol 351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_416

Download citation

Publish with us

Policies and ethics