Skip to main content

Improving NMR and MRI Sensitivity with Parahydrogen

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 338))

Abstract

Parahydrogen induced polarisation (PHIP) has wide utility in NMR and MRI as it can increase the sensitivity of both techniques. The transfer of spin order from parahydrogen to nuclei in the analyte leads to an increased magnetic response following interrogation by RF pulses. This spin transfer is catalysed by a homogeneous or heterogeneous catalyst. The increased magnetic response not only reduces the number of transients required to obtain the spectrum or image, but can also illuminate previously undetectable species present in solution. From its theoretical prediction to its experimental validation, PHIP has been applied in a range of different areas such as the structural analysis of complexes, understanding reaction mechanisms involving hydrogen and for the production of contrast agents for use in MRI. PHIP can also be readily combined with other techniques such as photochemistry which widens its field of applicability. In this review, we detail the properties of parahydrogen and the methods for its preparation and utilisation in homogeneous and heterogeneous based hydrogenation and non-hydrogenative reactions. Specific examples are explained for the application of PHIP in photochemical and hydroformylation reactions. Pulse sequences designed to be compatible with PHIP are described to exemplify how the increase in sensitivity can be increased even further by the interrogation of the magnetic states optimally. Finally, a section on the use of PHIP in the production of contrast agents suitable for MRI, and the monitoring of hydrogenation reactions using imaging techniques is discussed.

Please note the Erratum to this chapter at the end of the book

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-642-39728-8_428

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-39728-8_428

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALTADENA:

Adiabatic longitudinal transport after dissociation engenders nuclear alignment

CIDNP:

Chemically induced dynamic nuclear polarisation

COD:

Cyclooctadiene

DEPT:

Distortionless enhancement by polarisation transfer

DNP:

Dynamic nuclear polarisation

dpae:

1,2-Bis(diphenylarsino)ethane

dppe:

1,2-Bis(diphenylphosphino)ethane

dppm:

1,2-Bis(diphenylphosphino)methane

FISP:

Fast imaging with steady state precession

HFM:

Hollow fibre membrane

HMBC:

Heteronuclear multiple bond correlation

HMQC:

Heteronuclear multiple quantum correlation

HOHAHA:

Homonuclear Hartman–Hahn spectroscopy

IMes:

1,3-Bis(2,4,6-trimethylphenyl)imidazole-2-ylidene

INADEQUATE:

Incredible natural abundance double quantum transfer experiment

INEPT:

Insensitive nuclei enhanced by polarisation transfer

MAA:

Methyl 2-acetamidoacrylate

MAP:

Methyl 2-acetamidopropanote

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

OPSY:

Only parahydrogen spectroscopy

PASADENA:

Parahydrogen and synthesis allow dramatically enhanced nuclear alignment

PET:

Positron emission tomography

PHIP:

Parahydrogen induced polarisation

RF:

Radio frequency

S/N:

Signal-to-noise

SABRE:

Signal amplification by reversible exchange

SDS:

Sodium dodecyl sulphate

SEPP:

Selective excitation of polarisation using PASADENA

TOCSY:

Total correlation spectroscopy

References

  1. Brewer W, Kopp M (1976) Hyperfine Interact 2:299

    Article  CAS  Google Scholar 

  2. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) PNAS 100:10158

    Article  CAS  Google Scholar 

  3. Eisenschmid TC, Kirss RU, Deutsch PP, Hommeltoft SI, Eisenberg R (1987) J Am Chem Soc 109:8089

    Article  CAS  Google Scholar 

  4. Eisenberg R (1991) Acc Chem Res 24:110

    Article  CAS  Google Scholar 

  5. Natterer J, Bargon J (1997) Prog Nucl Magn Reson Spectrosc 31:293

    Article  Google Scholar 

  6. Duckett SB, Mewis RE (2012) Acc Chem Res. http://dx.doi.org/ 10.1021/ar2003094

  7. Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC, Green GGR (2012) Prog Nucl Magn Reson Spectrosc. http://dx.doi.org/ 10.1016/j.pnmrs.2012.03.011

  8. Bowers CR, Weitekamp DP (1986) Phys Rev Lett 57:2645

    Article  CAS  Google Scholar 

  9. Bowers CR, Weitekamp DP (1987) J Am Chem Soc 109:5541

    Article  CAS  Google Scholar 

  10. Pravica MG, Weitekamp DP (1988) Chem Phys Lett 145:255

    Article  CAS  Google Scholar 

  11. Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, Lopez-Serrano J, Williamson DC (2009) Science 323:1708

    Article  CAS  Google Scholar 

  12. Duckett SB, Wood NJ (2008) Coord Chem Rev 252:2278

    Article  CAS  Google Scholar 

  13. Taylor HS, Diamond H (1935) J Am Chem Soc 57:1251

    Article  CAS  Google Scholar 

  14. Gamliel A, Allouche-Arnon H, Nalbandian R, Barzilay CM, Gomori JM, Katz-Brull R (2010) Appl Magn Reson 39:329

    Article  CAS  Google Scholar 

  15. Feng B, Coffey AM, Colon RD, Chekmenev EY, Waddell KW (2012) J Magn Reson 214:258

    Article  CAS  Google Scholar 

  16. Hovener JB, Chekmenev EY, Harris KC, Perman WH, Robertson LW, Ross BD, Bhattacharya P (2009) Magn Reson Mater Phys Biol Med 22:111

    Article  CAS  Google Scholar 

  17. Hovener JB, Chekmenev EY, Harris KC, Perman WH, Tran TT, Ross BD, Bhattacharya P (2009) Magn Reson Mater Phys Biol Med 22:123

    Article  Google Scholar 

  18. Giernoth R, Huebler P, Bargon J (1998) Angew Chem Int Ed 37:2473

    Article  CAS  Google Scholar 

  19. Hubler P, Giernoth R, Kummerle G, Bargon J (1999) J Am Chem Soc 121:5311

    Article  Google Scholar 

  20. Cowley MJ, Adams RW, Atkinson KD, Cockett MCR, Duckett SB, Green GGR, Lohman JAB, Kerssebaum R, Kilgour D, Mewis RE (2011) J Am Chem Soc 133:6134

    Article  CAS  Google Scholar 

  21. Waddell KW, Coffey AM, Chekmenev EY (2010) J Am Chem Soc 133:97

    Article  Google Scholar 

  22. Duckett SB, Blazina D (2003) Eur J Inorg Chem 2003:2901

    Article  Google Scholar 

  23. Boutain M, Duckett SB, Dunne JP, Godard C, Hernandez JM, Holmes AJ, Khazal IG, Lopez-Serrano J (2010) Dalton Trans 39:3495

    Article  CAS  Google Scholar 

  24. Lopez-Serrano J, Duckett SB, Dunne JP, Godard C, Whitwood AC (2008) Dalton Trans 4270

    Google Scholar 

  25. Duckett SB, Newell CL, Eisenberg R (1994) J Am Chem Soc 116:10548

    Article  CAS  Google Scholar 

  26. Jang M, Duckett SB, Eisenberg R (1996) Organometallics 15:2863

    Article  CAS  Google Scholar 

  27. Trantzschel T, Bernarding J, Plaumann M, Lego D, Gutmann T, Ratajczyk T, Dillenberger S, Buntkowsky G, Bargon J, Bommerich U (2012) PCCP, 14:5601

    Google Scholar 

  28. Blazina D, Duckett SB, Halstead TK, Kozak CM, Taylor RJK, Anwar MS, Jones JA, Carteret HA (2005) Magn Reson Chem 43:200

    Article  CAS  Google Scholar 

  29. Blazina D, Dunne JP, Aiken S, Duckett SB, Elkington C, McGrady JE, Poli R, Walton SJ, Anwar MS, Jones JA, Carteret HA (2006) Dalton Trans 2072

    Google Scholar 

  30. Dunne JP, Blazina D, Aiken S, Carteret HA, Duckett SB, Jones JA, Poli R, Whitwood AC (2004) Dalton Trans 3616

    Google Scholar 

  31. Hasnip S, Duckett SB, Taylor DR, Taylor MJ (1998) Chem Commun 923

    Google Scholar 

  32. Godard C, Duckett SB, Henry C, Polas S, Toose R, Whitwood AC (2004) Chem Commun 1826

    Google Scholar 

  33. Fox DJ, Duckett SB, Flaschenriem C, Brennessel WW, Schneider J, Gunay A, Eisenberg R (2006) Inorg Chem 45:7197

    Article  CAS  Google Scholar 

  34. Permin AB, Eisenberg R (2002) J Am Chem Soc 124:12406

    Article  CAS  Google Scholar 

  35. Godard C, Duckett SB, Polas S, Tooze R, Whitwood AC (2005) J Am Chem Soc 127:4994

    Article  CAS  Google Scholar 

  36. Godard C, Duckett SB, Polas S, Tooze R, Whitwood AC (2009) Dalton Trans 2496

    Google Scholar 

  37. Carson PJ, Bowers CR, Weitekamp DP (2001) J Am Chem Soc 123:11821

    Article  CAS  Google Scholar 

  38. Balu AM, Duckett SB, Luque R (2009) Dalton Trans 5074

    Google Scholar 

  39. Koptyug IV, Zhivonitko VV, Kovtunov KV (2010) Chem. Phys. Chem. 11:3086

    Google Scholar 

  40. Adams RW, Duckett SB, Green RA, Williamson DC, Green GGR (2009) J Chem Phys 131

    Google Scholar 

  41. Atkinson KD, Cowley MJ, Duckett SB, Elliott PIP, Green GGR, Lopez-Serrano J, Khazal IG, Whitwood AC (2009) Inorg Chem 48:663

    Article  CAS  Google Scholar 

  42. Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Lopez-Serrano J, Whitwood AC (2009) J Am Chem Soc 131:13362

    Article  CAS  Google Scholar 

  43. Gong Q, Gordji-Nejad A, Blümich B, Appelt S (2010) Anal Chem 82:7078

    Article  CAS  Google Scholar 

  44. Glöggler S, Emondts M, Colell J, Müller R, Blümich B, Appelt S (2011) Analyst 136:1566

    Article  Google Scholar 

  45. Glöggler S, Müller R, Colell J, Emondts M, Dabrowski M, Blümich B, Appelt S (2011) PCCP 13:13759

    Article  Google Scholar 

  46. Wood NJ, Brannigan JA, Duckett SB, Heath SL, Wagstafft J (2007) J Am Chem Soc 129:11012

    Article  CAS  Google Scholar 

  47. Kuhn LT, Bargon J (2007) Top Curr Chem 276:25

    Article  CAS  Google Scholar 

  48. Eisenschmid TC, McDonald J, Eisenberg R, Lawler RG (1989) J Am Chem Soc 111:7267

    Article  CAS  Google Scholar 

  49. Sørensen OW, Ernst RR (1983) J Magn Reson (1969) 51:477

    Google Scholar 

  50. Duckett SB, Newell CL, Eisenberg R (1993) J Am Chem Soc 115:1156

    Article  CAS  Google Scholar 

  51. Haake M, Natterer J, Bargon J (1996) J Am Chem Soc 118:8688

    Article  CAS  Google Scholar 

  52. Sengstschmid H, Freeman R, Barkemeyer J, Bargon J (1996) J Magn Reson, Ser A 120:249

    Article  CAS  Google Scholar 

  53. Barkemeyer J, Bargon J, Sengstschmid H, Freeman R (1996) J Magn Reson, Ser A 120:129

    Article  CAS  Google Scholar 

  54. Natterer J, Barkemeyer J, Bargon J (1996) J Magn Reson, Ser A 123:253

    Article  CAS  Google Scholar 

  55. Duckett SB, Barlow GK, Partridge MG, Messerle BA (1995) J Chem Soc-Dalton Trans 3427

    Google Scholar 

  56. Duckett SB, Mawby RJ, Partridge MG (1996) Chem Commun 383

    Google Scholar 

  57. Aguilar JA, Elliott PIP, Lopez-Serrano J, Adams RW, Duckett SB (2007) Chem Commun 1183

    Google Scholar 

  58. Tang JA, Gruppi F, Fleysher R, Sodickson DK, Canary JW, Jerschow A (2011) Chem Commun 47:958

    Article  CAS  Google Scholar 

  59. Aguilar JA, Adams RW, Duckett SB, Green GGR, Kandiah R (2011) J Magn Reson 208:49

    Article  CAS  Google Scholar 

  60. Bommerich U, Trantzschel T, Mulla-Osman S, Buntkowsky G, Bargon J, Bernarding J (2010) PCCP 12:10309

    Article  CAS  Google Scholar 

  61. Bhattacharya P, Harris K, Lin AP, Mansson M, Norton VA, Perman WH, Weitekamp DP, Ross BD (2005) Magn Reson Mater Phys Biol Med 18:245

    Article  CAS  Google Scholar 

  62. Roth M, Kindervater P, Raich H-P, Bargon J, Spiess HW, Münnemann K (2010) Angew Chem Int Ed 49:8358

    Article  CAS  Google Scholar 

  63. Goldman M, Johannesson H, Axelsson O, Karlsson M (2006) C R Chim 9:357

    Article  CAS  Google Scholar 

  64. Reineri F, Santelia D, Viale A, Cerutti E, Poggi L, Tichy T, Premkumar SSD, Gobetto R, Aime S (2010) J Am Chem Soc 132:7186

    Article  CAS  Google Scholar 

  65. Reineri F, Viale A, Giovenzana G, Santelia D, Dastru W, Gobetto R, Aime S (2008) J Am Chem Soc 130:15047

    Article  CAS  Google Scholar 

  66. Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY (2012) J Am Chem Soc 134:3957

    Article  CAS  Google Scholar 

  67. Goldman M, Johannesson H (2005) C R Phys 6:575

    Article  CAS  Google Scholar 

  68. Bouchard L-S, Burt SR, Anwar MS, Kovtunov KV, Koptyug IV, Pines A (2008) Science 319:442

    Article  CAS  Google Scholar 

  69. Bouchard L-S, Kovtunov KV, Burt SR, Anwar MS, Koptyug IV, Sagdeev RZ, Pines A (2007) Angew Chem Int Ed 46:4064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the EPSRC (grant number EP/G009546/1) and the University of York for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan E. Mewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duckett, S.B., Mewis, R.E. (2012). Improving NMR and MRI Sensitivity with Parahydrogen. In: Kuhn, L. (eds) Hyperpolarization Methods in NMR Spectroscopy. Topics in Current Chemistry, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_388

Download citation

Publish with us

Policies and ethics