Skip to main content

Catalytic Reductive Coupling of Alkenes and Alkynes to Carbonyl Compounds and Imines Mediated by Hydrogen

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 279))

Abstract

Catalytic transformations mediated by hydrogen or “hydrogenations” encompass a diverse range of environmentally benign processes, including large volume transformations of enormous socioeconomic impact, such as the Haber–Bosch process and the reduction of olefinic feedstocks. Despite considerable progress across diverse areas of catalytic hydrogenation, reductive C–C bond formations mediated by hydrogen have, until recently, been restricted to the incorporation of carbon monoxide, as illustrated by the Fischer–Tropsch reaction and alkene hydroformylation. In this account, the emerging family of hydrogen-mediated C–C bond formations beyond carbon monoxide coupling is reviewed. This new type of hydrogenation enables direct coupling of diverse π-unsaturated reactants to carbonyl compounds and imines under neutral condition with complete atom economy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krische MJ (2005) Tetrahedron 61:6169

    CAS  Google Scholar 

  2. Hoffman R (1998) Am Sci 86:326

    Google Scholar 

  3. Williams WD (1999) Bull Hist Chem 24:66

    CAS  Google Scholar 

  4. Nobel Foundation (1966) Nobel lectures, chemistry, 1901–1921. Elsevier, Amsterdam

    Google Scholar 

  5. Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, MA

    Google Scholar 

  6. Fischer F, Tropsch H (1923) Brennstoff Chem 4:276

    CAS  Google Scholar 

  7. Fischer F, Tropsch H (1923) Chem Ber 56B:2428

    CAS  Google Scholar 

  8. Storch HH, Anderson RB, Hofer LJE, Hawk CO, Anderson HC, Golumbic N (1948) Synthetic liquid fuels from hydrogenation of carbon monoxide, Part 1: review of literature. Technical paper 709. United States Department of the Interior, Washington, DC

    Google Scholar 

  9. United States Department of Energy ( http://www.fossil.energy.gov/aboutus/history/syntheticfuels_history.html ), last visited: 3 Mar 2007

  10. Jacoby M (2006) C&EN News 84:57

    Google Scholar 

  11. Roelen O (1938) DE Patent 849548

    Google Scholar 

  12. Frohning CD, Kohlpaintner CW (1996) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 1. VCH, Weinheim, p 29

    Google Scholar 

  13. van Leeuwen PWNM (2004) Homogeneous catalysis, understanding the art. Kluwer, Dordrecht

    Google Scholar 

  14. Sabatier P, Senderens JB (1897) CR Hebd Seances Acad Sci 124:1358

    Google Scholar 

  15. Sabatier P, Senderens JB (1899) CR Hebd Seances Acad Sci 128:1173

    CAS  Google Scholar 

  16. Sabatier P, Senderens JB (1901) CR Hebd Seances Acad Sci 132:210

    CAS  Google Scholar 

  17. Lattes A (2000) CR Acad Sci Ser IIC: Chemie 3:705

    CAS  Google Scholar 

  18. Calvin M (1938) Trans Far Soc 34:1181

    CAS  Google Scholar 

  19. Calvin M (1939) J Am Chem Soc 61:2230

    CAS  Google Scholar 

  20. Halpern J, Harrod JF, James BR (1961) J Am Chem Soc 83:753

    CAS  Google Scholar 

  21. Halpern J, Harrod JF, James BR (1966) J Am Chem Soc 88:5150

    CAS  Google Scholar 

  22. Gillard RD, Wilkinson G, Osborn JA, Stockwell PB (1964) Proc Chem Soc, p 284

    Google Scholar 

  23. Jardine FH, Osborn JA, Wilkinson G, Young JF (1965) Chem Ind, p 560

    Google Scholar 

  24. Young JF, Osborn JA, Jardine FH, Wilkinson G (1965) Chem Commun, p 131

    Google Scholar 

  25. Knowles WS, Sabacky MJ (1968) Chem Commun, p 1445

    Google Scholar 

  26. Horner L, Siegel H, Büthe H (1968) Angew Chem Int Ed 7:942

    CAS  Google Scholar 

  27. Dang TP, Kagan HB (1971) Chem Commun, p 481

    Google Scholar 

  28. Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R (1980) J Am Chem Soc 102:7932

    CAS  Google Scholar 

  29. Thommen M (2005) Spec Chem Mag 25:26

    CAS  Google Scholar 

  30. Thayer AM (2005) C&EN News 83:40

    Google Scholar 

  31. Jakel C, Paciello R (2006) Chem Rev 106:2912

    Google Scholar 

  32. Molander GA, Hoberg JO (1992) J Am Chem Soc 114:3123

    CAS  Google Scholar 

  33. Kokubo K, Miura M, Nomura M (1995) Organometallics 14:4521

    CAS  Google Scholar 

  34. Moyes RB, Walker DW, Wells PB, Whan DA, Irvine EA (1992) Special Pub Royal Soc Chem 114:207

    CAS  Google Scholar 

  35. Bianchini C, Meli A, Peruzzini M, Vizza F, Zanobini F, Frediani P (1989) Organometallics 8:2080

    CAS  Google Scholar 

  36. Tolman CA, Meakin PZ, Lindner DL, Jesson JP (1974) J Am Chem Soc 96:2762

    CAS  Google Scholar 

  37. Halpern J, Wong CS (1973) Chem Commun, p 629

    Google Scholar 

  38. Halpern J, Okamoto T, Zakhariev A (1976) J Mol Catal 2:65

    Google Scholar 

  39. Landis CR, Halpern J (1987) J Am Chem Soc 109:1746

    CAS  Google Scholar 

  40. Chan ASC, Halpern J (1980) J Am Chem Soc 102:838

    CAS  Google Scholar 

  41. Halpern J, Riley DP, Chan ASC, Pluth JJ (1977) J Am Chem Soc 99:8055

    CAS  Google Scholar 

  42. Halpern J (1982) Science 217:401

    CAS  Google Scholar 

  43. Halpern J (1985) Asymm Synth 5:41

    CAS  Google Scholar 

  44. Landis CR, Brauch TW (1998) Inorg Chim Acta 270:285

    CAS  Google Scholar 

  45. Gridnev ID, Imamoto T (2004) Acc Chem Res 37:633

    CAS  Google Scholar 

  46. Schrock RR, Osborn JA (1976) J Am Chem Soc 98:2134

    CAS  Google Scholar 

  47. Schrock RR, Osborn JA (1976) J Am Chem Soc 98:2143

    CAS  Google Scholar 

  48. Schrock RR, Osborn JA (1976) J Am Chem Soc 98:4450

    CAS  Google Scholar 

  49. Brothers PJ (1981) Prog Inorg Chem 28:1

    CAS  Google Scholar 

  50. Jeske G, Lauke H, Mauermann H, Schumann H, Marks TJ (1985) J Am Chem Soc 107:8111

    CAS  Google Scholar 

  51. Norton JR (1992) In: Dedieu A (ed) Transition metal hydrides, chap 9. Wiley-VCH, New York

    Google Scholar 

  52. Jang HY, Krische MJ (2004) Acc Chem Res 37:653

    CAS  Google Scholar 

  53. Ngai MY, Krische MJ (2006) Chim Oggi/Chem Today 24:12

    Google Scholar 

  54. Ngai MY, Kong JR, Krische MJ (2007) J Org Chem 72:1063

    CAS  Google Scholar 

  55. Revis A, Hilty TK (1987) Tetrahedron Lett 28:4809

    CAS  Google Scholar 

  56. Matsuda I, Takahashi K, Sato S (1990) Tetrahedron Lett 31:5331

    CAS  Google Scholar 

  57. Taylor SJ, Morken JP (1999) J Am Chem Soc 121:12202

    CAS  Google Scholar 

  58. Taylor SJ, Duffey MO, Morken JP (2000) J Am Chem Soc 122:4528

    CAS  Google Scholar 

  59. Emiabata-Smith D, McKillop A, Mills C, Motherwell WB, Whitehead AJ (2001) Synlett, p 1302

    Google Scholar 

  60. Freiría M, Whitehead AJ, Tocher DA, Motherwell WB (2004) Tetrahedron 60:2673

    Google Scholar 

  61. Fuller NO, Morken JP (2005) Synlett, p 1459

    Google Scholar 

  62. Nishiyama H, Shiomi T, Tsuchiya Y, Matsuda I (2005) J Am Chem Soc 127:6972

    CAS  Google Scholar 

  63. Willis MC, Woodward RL (2005) J Am Chem Soc 127:18012

    CAS  Google Scholar 

  64. Ito JI, Shiomi T, Nishiyama H (2006) Adv Synth Catal 348:1235

    CAS  Google Scholar 

  65. Jang HY, Huddleston RR, Krische MJ (2002) J Am Chem Soc 124:15156

    CAS  Google Scholar 

  66. Huddleston RR, Krische MJ (2003) Org Lett 5:1143

    CAS  Google Scholar 

  67. Koech PK, Krische MJ (2004) Org Lett 6:691

    CAS  Google Scholar 

  68. Marriner GA, Garner SA, Jang HY, Krische MJ (2004) J Org Chem 69:1380

    CAS  Google Scholar 

  69. Jung CK, Garner SA, Krische MJ (2006) Org Lett 8:519

    CAS  Google Scholar 

  70. Han SB, Krische MJ (2006) Org Lett 8:5657

    CAS  Google Scholar 

  71. Jung CK, Krische MJ (2006) J Am Chem Soc 128:17051

    CAS  Google Scholar 

  72. Isayama S, Mukaiyama T (1989) Chem Lett 2005

    Google Scholar 

  73. Baik TG, Luis AL, Wang LC, Krische MJ (2001) J Am Chem Soc 123:5112

    CAS  Google Scholar 

  74. Wang LC, Jang HY, Roh Y, Lynch V, Schultz AJ, Wang X, Krische MJ (2002) J Am Chem Soc 124:9448

    CAS  Google Scholar 

  75. Lam HW, Joensuu PM, Murray GJ, Fordyce EAF, Prieto O, Luebbers T (2006) Org Lett 8:3729

    CAS  Google Scholar 

  76. Zhao CX, Duffey MO, Taylor SJ, Morken JP (2001) Org Lett 3:1829

    CAS  Google Scholar 

  77. Kiyooka SI, Shimizu A, Torii S (1998) Tetrahedron Lett 39:5237

    CAS  Google Scholar 

  78. Ooi T, Doda K, Sakai D, Maruoka K (1999) Tetrahedron Lett 40:2133

    CAS  Google Scholar 

  79. Lam HW, Joensuu PMA (2005) Org Lett 7:4225

    CAS  Google Scholar 

  80. Lam HW, Murray GJ, Firth JD (2005) Org Lett 7:5743

    CAS  Google Scholar 

  81. Zhao D, Oisaki K, Kanai M, Shibasaki M (2006) Tetrahedron Lett 47:1403

    CAS  Google Scholar 

  82. Deschamp J, Chuzel O, Hannedouche J, Riant O (2006) Angew Chem Int Ed 45:1292

    CAS  Google Scholar 

  83. Zhao D, Oisaki K, Kanai M, Shibasaki M (2006) J Am Chem Soc 128:14440

    CAS  Google Scholar 

  84. Shibata I, Kato H, Ishida T, Yasuda M, Baba A (2004) Angew Chem Int Ed 43:711

    CAS  Google Scholar 

  85. Miura K, Yamada Y, Tomita M, Hosomi A (2004) Synlett, p 1985

    Google Scholar 

  86. Zimmerman HE, Traxler MD (1957) J Am Chem Soc 79:1920

    CAS  Google Scholar 

  87. Evans DA, Nelson JV, Taber TR (1982) Top Stereochem 13:1

    CAS  Google Scholar 

  88. Heathcock CH (1982) ACS Symp Ser 185:55

    Article  CAS  Google Scholar 

  89. Heathcock CH (1984) Asymm Synth 3:111

    CAS  Google Scholar 

  90. Heathcock CH (1991) In: Heathcock CH (ed) Additions to C–X n-bonds, part 2. Comprehensive organic synthesis, vol 2. Pergamon, New York, p 181

    Google Scholar 

  91. Farina V, Krishnan B (1991) J Am Chem Soc 113:9585

    CAS  Google Scholar 

  92. Farina V (1996) Pure Appl Chem 68:73

    CAS  Google Scholar 

  93. Andersen NG, Keay BA (2001) Chem Rev 101:997

    CAS  Google Scholar 

  94. Sakthivel K, Notz W, Bui T, Barbas CF III (2001) J Am Chem Soc 123:5260

    CAS  Google Scholar 

  95. Tang Z, Yang ZH, Chen XH, Cun LF, Mi AQ, Jiang YZ, Gong LZ (2005) J Am Chem Soc 127:9285

    CAS  Google Scholar 

  96. Yoshikawa N, Yamada YMA, Das J, Sasai H, Shibasaki M (1999) J Am Chem Soc 121:4168

    CAS  Google Scholar 

  97. Muraoka T, Kamiya SI, Matsuda I, Itoh K (2002) Chem Commun, p 1284

    Google Scholar 

  98. Townes JA, Evans MA, Queffelec J, Taylor SJ, Morken JP (2002) Org Lett 4:2537

    CAS  Google Scholar 

  99. Zhao GL, Córdova A (2006) Tetrahedron Lett 47:7417

    CAS  Google Scholar 

  100. Huddleston RR, Jang HY, Krische MJ (2003) J Am Chem Soc 125:11488

    CAS  Google Scholar 

  101. Jang HY, Huddleston RR, Krische MJ (2004) J Am Chem Soc 126:4664

    CAS  Google Scholar 

  102. Kong JR, Ngai MY, Krische MJ (2006) J Am Chem Soc 128:718

    CAS  Google Scholar 

  103. Cho CW, Krische MJ (2006) Org Lett 8:3873

    CAS  Google Scholar 

  104. Komanduri V, Krische MJ (2006) J Am Chem Soc 128:16448

    CAS  Google Scholar 

  105. Kong JR, Cho CW, Krische MJ (2005) J Am Chem Soc 127:11269

    CAS  Google Scholar 

  106. Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Angew Chem Int Ed 43:1566

    CAS  Google Scholar 

  107. Uraguchi D, Terada M (2004) J Am Chem Soc 126:5356

    CAS  Google Scholar 

  108. Hoffmann S, Seayad AM, List B (2005) Angew Chem Int Ed 44:7424

    CAS  Google Scholar 

  109. Musashi Y, Sakaki S (2002) J Am Chem Soc 124:7588

    CAS  Google Scholar 

  110. Rhee JU, Krische MJ (2006) J Am Chem Soc 128:10674

    CAS  Google Scholar 

  111. Kirk-Othmer (ed) (2007) Kirk-Othmer encyclopedia of chemical technology, 5th edn. Wiley, Hoboken

    Google Scholar 

  112. Kong JR, Krische MJ (2006) J Am Chem Soc 128:16040

    CAS  Google Scholar 

  113. Bianchini C, Caulton KG, Chardon C, Eisenstein O, Folting K, Johnson TJ, Meli A, Peruzzini M, Rauscher DJ, Streib WE, Vizza F (1991) J Am Chem Soc 113:5127

    CAS  Google Scholar 

  114. Krug C, Hartwig JF (2002) J Am Chem Soc 124:1674

    CAS  Google Scholar 

  115. Fujii T, Koike T, Mori A, Osakada K (2002) Synlett, p 298

    Google Scholar 

  116. Plattner D (2001) Int J Mass Spectrom 207:125

    CAS  Google Scholar 

  117. Chen P (2003) Angew Chem Int Ed 42:2832

    CAS  Google Scholar 

  118. Dewar MJS (1951) Bull Soc Chim Fr 18:C71

    Google Scholar 

  119. Chatt J, Duncanson LA (1953) J Chem Soc 2939

    Google Scholar 

  120. Dewar MJS, Ford GP (1979) J Am Chem Soc 101:783

    CAS  Google Scholar 

  121. Vaska L, Peone J Jr (1971) Chem Commun, p 418

    Google Scholar 

  122. Haynes A, McNish J, Pearson JM (1998) J Organomet Chem 551:339

    CAS  Google Scholar 

  123. Grotjahn DB, Collins LSB, Wolpert M, Bikzhanova GA, Lo HC, Combs D, Hubbard JL (2001) J Am Chem Soc 123:8260

    CAS  Google Scholar 

  124. Li J, Schreckenbach G, Ziegler T (1995) J Am Chem Soc 117:486

    CAS  Google Scholar 

  125. Ngai MY, Barchuk A, Krische MJ (2007) J Am Chem Soc 129:280

    CAS  Google Scholar 

  126. Jang HY, Huddleston RR, Krische MJ (2003) Angew Chem Int Ed 42:4074

    CAS  Google Scholar 

  127. Miller JA, Nelson JA (1991) Organometallics 10:2958

    CAS  Google Scholar 

  128. Hong YT, Barchuk A, Krische MJ (2006) Angew Chem Int Ed 45:6885

    CAS  Google Scholar 

  129. Vora KP, Lochow CF, Miller RG (1980) J Organomet Chem 192:257

    CAS  Google Scholar 

  130. Rode E, Davis ME, Hanson BE (1985) Chem Commun, p 716

    Google Scholar 

  131. Marder TB, Roe DC, Milstein D (1988) Organometallics 7:1451

    CAS  Google Scholar 

  132. Jun CH, Lee H, Hong JB (1997) J Org Chem 62:1200

    CAS  Google Scholar 

  133. Jun CH, Lee DY, Lee H, Hong JB (2000) Angew Chem Int Ed 39:3070

    CAS  Google Scholar 

  134. Jun CH, Chung JW, Lee DY, Loupy A, Chatti S (2001) Tetrahedron Lett 42:4803

    CAS  Google Scholar 

  135. Willis MC, Sapmaz S (2001) Chem Commun, p 2558

    Google Scholar 

  136. Tanaka M, Imai M, Yamamoto Y, Tanaka K, Shimowatari M, Nagumo S, Kawahara N, Suemune H (2003) Org Lett 5:1365

    CAS  Google Scholar 

  137. Imai M, Tanaka M, Tanaka K, Yamamoto Y, Imai-Ogata N, Shimowatari M, Nagumo S, Kawahara N, Suemune H (2004) J Org Chem 69:1144

    CAS  Google Scholar 

  138. Willis MC, McNally SJ, Beswick PJ (2004) Angew Chem Int Ed 43:340

    CAS  Google Scholar 

  139. Tanaka K, Tanaka M, Suemune H (2005) Tetrahedron Lett 46:6053

    CAS  Google Scholar 

  140. Willis MC, Randell-Sly HE, Woodward RL, Currie GS (2005) Org Lett 7:2249

    CAS  Google Scholar 

  141. Moxham GL, Randell-Sly HE, Brayshaw SK, Woodward RL, Weller AS, Willis MC (2006) Angew Chem Int Ed 45:7618

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Krische .

Editor information

Michael J. Krische

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iida, H., Krische, M.J. (2007). Catalytic Reductive Coupling of Alkenes and Alkynes to Carbonyl Compounds and Imines Mediated by Hydrogen . In: Krische, M.J. (eds) Metal Catalyzed Reductive C–C Bond Formation. Topics in Current Chemistry, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2007_122

Download citation

Publish with us

Policies and ethics