Skip to main content

Univariate Polynomial Real Root Isolation: Continued Fractions Revisited

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

Abstract

We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real numbers. We improve the previously known bound by a factor of dĪ„, where d is the polynomial degree and Ī„ bounds the coefficient bitsize, thus matching the current record complexity for real root isolation by exact methods. Namely, the complexity bound is \({{\widetilde{\mathcal{O}}_B}(d^4 \tau^2)}\) using a standard bound on the expected bitsize of the integers in the continued fraction expansion. We show how to compute the multiplicities within the same complexity and extend the algorithm to non square-free polynomials. Finally, we present an efficient open-source C++ implementation in the algebraic library synaps, and illustrate its efficiency as compared to other available software. We use polynomials with coefficient bitsize up to 8000 and degree up to 1000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akritas, A.: An implementation of Vincent’s theorem. Numerische Mathematik 36, 53–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akritas, A.: There is no ”Uspensky’s method”. Extended Abstract. In: Proc. Symp. on Symbolic and Algebraic Computation, Waterloo, Canada, pp. 88–90 (1986)

    Google Scholar 

  3. Akritas, A., Bocharov, A., StrzÊbonski, A.: Implementation of real root isolation algorithms in Mathematica. In: Abstracts of Interval 1994, Russia, pp. 23–27 (1994)

    Google Scholar 

  4. Akritas, A., Strzebonski, A.: A comparative study of two real root isolation methods. Nonlinear Analysis: Modelling and Control 10(4), 297–304 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Akritas, A.G.: Elements of Computer Algebra with Applications. J. Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  6. Bini, D., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numerical Algorithms, 127–173 (2000)

    Google Scholar 

  7. Bombieri, E., van der Poorten, A.: Continued fractions of algebraic numbers. In: Computational Algebra and Number Theory, pp. 137–152. Kluwer, Dordrecht (1995)

    Google Scholar 

  8. Brent, R., van der Poorten, A., Riele, H.: A comparative study of algorithms for computing continued fractions of algebraic numbers. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 35–47. Springer, Heidelberg (1996)

    Google Scholar 

  9. Collins, G., Akritas, A.: Polynomial real root isolation using Descartes’ rule of signs. In: SYMSAC 1976, New York, USA, pp. 272–275. ACM Press, New York (1976)

    Chapter  Google Scholar 

  10. Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, 2nd edn., pp. 83–94. Springer, Wien (1982)

    Google Scholar 

  11. Davenport, J.H.: Cylindrical algebraic decomposition. Technical Report 88–10, School of Mathematical Sciences, University of Bath, England (1988)

    Google Scholar 

  12. Du, Z., Sharma, V., Yap, C.K.: Amortized bound for root isolation via Sturm sequences. In: Wang, D., Zhi, L. (eds.) Int. Workshop on Symbolic Numeric Computing, School of Science, Beihang University, Beijing, China, pp. 81–93 (2005)

    Google Scholar 

  13. Eigenwillig, A., Sharma, V., Yap, C.: Almost tight complexity bounds for the Descartes method. In: ISSAC 2006 (to appear, 2006)

    Google Scholar 

  14. Emiris, I., Tsigaridas, E.P.: Computations with one and two algebraic numbers. Technical report, ArXiv (December 2005)

    Google Scholar 

  15. Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: Real Algebraic Numbers: Complexity Analysis and Experimentation. RR 5897, INRIA (April 2006)

    Google Scholar 

  16. Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: The predicates for the Voronoi diagram of ellipses. In: Proc. 24th Annual ACM SoCG, pp. 227–236 (2006)

    Google Scholar 

  17. Khintchine, A.: Continued Fractions. University of Chicago Press, Chicago (1964)

    MATH  Google Scholar 

  18. Kioustelidis, J.: Bounds for the positive roots of polynomials. Journal of Computational and Applied Mathematics 16, 241–244 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krandick, W., Mehlhorn, K.: New bounds for the Descartes method. JSC 41(1), 49–66 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Mignotte, M.: Mathematics for computer algebra. Springer, New York (1991)

    Google Scholar 

  21. Mignotte, M., Stefanescu, D.: Polynomials. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  22. Mignotte, M.: On the Distance Between the Roots of a Polynomial. Appl. Algebra Eng. Commun. Comput. 6(6), 327–332 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mourrain, B., Pavone, J.P., TrÊbuchet, P., Tsigaridas, E.: SYNAPS, a library for symbolic-numeric computation. In: 8th MEGA, Italy. Software presentation (2005)

    Google Scholar 

  24. Pan, V.: Solving a polynomial equation: Some history and recent progress. SIAM Rev. 39(2), 187–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Richtmyer, R., Devaney, M., Metropolis, N.: Continued fraction expansions of algebraic numbers. Numerische Mathematik 4, 64–68 (1962)

    Article  MathSciNet  Google Scholar 

  26. Rosen, D., Shallit, J.: A continued fraction algorithm for approximating all real polynomial roots. Math. Mag. 51, 112–116 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rouillier, F., Zimmermann, Z.: Efficient isolation of polynomial’s real roots. J. of Computational and Applied Mathematics 162(1), 33–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stefanescu, D.: New bounds for the positive roots of polynomials. Journal of Universal Computer Science 11(12), 2132–2141 (2005)

    MathSciNet  Google Scholar 

  29. Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)

    Google Scholar 

  30. van der Poorten, A.: An introduction to continued fractions. In: Diophantine analysis, pp. 99–138. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  31. van der Sluis, A.: Upper bounds for the roots of polynomials. Numerische Mathematik 15, 250–262 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  32. Vincent, A.J.H.: Sur la rÊsolution des Êquations numÊriques. J. Math. Pures Appl. 1, 341–372 (1836)

    Google Scholar 

  33. von zur Gathen, J., Gerhard, J.: Fast Algorithms for Taylor Shifts and Certain Difference Equations. In: ISSAC, pp. 40–47 (1997)

    Google Scholar 

  34. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsigaridas, E.P., Emiris, I.Z. (2006). Univariate Polynomial Real Root Isolation: Continued Fractions Revisited. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_72

Download citation

  • DOI: https://doi.org/10.1007/11841036_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics