Skip to main content
Book cover

Biofuels pp 41–65Cite as

Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 108))

Abstract

Second-generation bioethanol produced from various lignocellulosic materials, such as wood, agricultural or forest residues, has the potential to be a valuable substitute for, or a complement to, gasoline. One of the crucial steps in the ethanol production is the hydrolysis of the hemicellulose and cellulose to monomer sugars. The most promising method for hydrolysis of cellulose to glucose is by use of enzymes, i.e. cellulases. However, in order to make the raw material accessible to the enzymes some kind of pretreatment is necessary. During the last few years a large number of pretreatment methods have been developed, comprising methods working at low pH, i.e. acid based, medium pH (without addition of catalysts), and high pH, i.e. with a base as catalyst. Many methods have been shown to result in high sugar yields, above 90% of theoretical for agricultural residues, especially for corn stover. For more recalcitrant materials, e.g. softwood, acid hydrolysis and steam pretreatment with acid catalyst seem to be the methods that can be used to obtain high sugar and ethanol yields. However, for more accurate comparison of different pretreatment methods it is necessary to improve the assessment methods under real process conditions. The whole process must be considered when a performance evaluation is to be made, as the various pretreatment methods give different types of materials. (Hemicellulose sugars can be obtained either in the liquid as monomer or oligomer sugars, or in the solid material to various extents; lignin can be either in the liquid or remain in the solid part; the composition and amount/concentration of possible inhibitory compounds also vary.) This will affect how the enzymatic hydrolysis should be performed (e.g. with or without hemicellulases), how the lignin is recovered and also the use of the lignin co-product.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. European Union (2006) Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. European Commission

    Google Scholar 

  2. Gregg DJ, Boussaid A, Saddler JN (1998) Bioresour Technol 63:7

    Article  CAS  Google Scholar 

  3. Wingren A, Galbe M, Zacchi G (2003) Biotechnol Prog 19:1109

    Article  CAS  Google Scholar 

  4. Ogier JC, Ballerini D, Leygue JP, Rigal L, Pourquie J (1999) Oil Gas Sci Technol 54:67

    Article  CAS  Google Scholar 

  5. Yu ZS, Zhang HX (2004) Bioresour Technol 93:199

    Article  CAS  Google Scholar 

  6. Sheehan J (2001) The road to bioethanol. A strategic perspective of the US Department of Energy's National Ethanol Program. In: Himmel ME, Baker JO, Saffler JN (eds) Glycosyl hydrolases for biomass conversion. American Chemical Society, Washington DC, pp 2–25

    Google Scholar 

  7. Sun Y, Cheng J (2002) Bioresour Technol 83:1

    Article  CAS  Google Scholar 

  8. Overend RP, Chornet E (1987) Philos Trans R Soc Lond A 321(1561):523

    Article  CAS  Google Scholar 

  9. Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Chem Eng Sci 47:1109

    Article  CAS  Google Scholar 

  10. Chum HL, Johnson DK, Black SK, Overend RP (1990) Ind Eng Res 29:156

    Article  CAS  Google Scholar 

  11. Boussaid A, Robinson J, Cai Y, Gregg DJ, Saddler JN (1999) Biotechnol Bioeng 64:284

    Article  CAS  Google Scholar 

  12. Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Appl Biochem Biotechnol 47:77

    Google Scholar 

  13. Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Appl Biochem Biotechnol 133:77

    Google Scholar 

  14. Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Appl Biochem Biotechnol 561:84

    Google Scholar 

  15. Mandels M, Reese ET (1963) Inhibition of cellulases and β-glucosidases. In: Reese ET (ed) Advances In enzymic hydrolysis of cellulose and related materials. Pergamon, London, pp 115

    Google Scholar 

  16. Sternberg D, Vijayakumar P, Reese ET (1977) Can J Microbiol 23:139

    Article  CAS  Google Scholar 

  17. Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Biotechnol Bioeng 36:275

    Article  CAS  Google Scholar 

  18. Tengborg C, Galbe M, Zacchi G (2001) Biotechnol Prog 17:110

    Article  CAS  Google Scholar 

  19. NREL (2004) Chemical analysis and testing standard procedures LAP-009. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  20. Tengborg C, Galbe M, Zacchi G (2001) Enzyme Microb Technol 28:835

    Article  CAS  Google Scholar 

  21. Datta R (1981) Proc Biochem June/July:16

    Google Scholar 

  22. Litzen D, Dixon D, Gilcrease P, Winter R (2006) Pretreatment of biomass for ethanol production. US Patent 2006 0141,584

    Google Scholar 

  23. Takacs E, Wojnarovits L, Foldvary C, Hargittai P, Borsa J, Sajo I (2000) Radiat Phys Chem 57:399

    Article  CAS  Google Scholar 

  24. Sehoon K, Holtzapple MT (2005) Bioresour Technol 96:1994

    Article  CAS  Google Scholar 

  25. Chang VS, Kaar WE, Burr B, Holtzapple MT (2001) Biotechnol Lett 23:1337

    Google Scholar 

  26. Palmqvist E, Hahn-Hägerdal B (2000) Bioresour Technol 74:17

    Article  CAS  Google Scholar 

  27. Palmqvist E, Hahn-Hägerdal B (2000) Bioresour Technol 74:25

    Article  CAS  Google Scholar 

  28. Larsson S, Palmqvist E, Hahn-Hägerdak B (1999) Enzyme Microb Technol 24:151

    Article  CAS  Google Scholar 

  29. Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biotech Bioeng 90:473

    Article  CAS  Google Scholar 

  30. Knappert D, Grethlein H, Converse A (1980) Biotechnol Bioeng 22:1449

    Article  CAS  Google Scholar 

  31. Brownell HH, Yu EKC, Saddler JN (1985) Biotechnol Bioeng 28:792

    Article  Google Scholar 

  32. http://www.nrel.gov/docs/fy00osti/28397.pdf (2006) NREL, USA

  33. http://www.sekab.com/default.asp?id=1137&refid=1037 (2006) SEKAB, Sweden

  34. http://www.iogen.ca/company/facilities/index.html (2006) Iogen Corp, Canada

  35. Bouchard J, Nguyen TS, Chornet E, Overend RP (1989) Bioresour Technol 36:121

    Article  Google Scholar 

  36. Griebl A, Lange T, Weber H, Milacher W, Sixta H (2006) Macromol Symp 232:107

    Article  CAS  Google Scholar 

  37. Van Walsum GP, Allen SG, Spencer MJ, Laser MS, Antal MJ, Lynd LR (1996) Appl Biochem Biotechnol 157:57

    Google Scholar 

  38. Schmidt AS, Thomsen AB (1998) Bioresour Technol 64:139

    Article  CAS  Google Scholar 

  39. Dale BE, Moreira MJ (1982) Biotechnol Bioeng Symp 12:31

    CAS  Google Scholar 

  40. Teymouri F, Laureano-Peres L, Alizadeh H, Dale BE (2005) Bioresour Technol 96:2014

    Article  CAS  Google Scholar 

  41. Gollapalli LE, Dale BE, Rivers DM (2002) Appl Biochem Bioeng 98:23

    Google Scholar 

  42. Hsu TA (1996) In: Wyman CE (ed) Handbook on bioethanol production and utilization. Taylor & Francis, Washington, p 179

    Google Scholar 

  43. Belkacemi K, Turtotte G, de Halleux D, Savoie P (1998) Appl Biochem Biotechnol 70–72:441

    Article  Google Scholar 

  44. Sun Y, Cheng J (2002) Bioresour Technol 83:1

    Article  CAS  Google Scholar 

  45. Kim SB, Lee YY (1996) Appl Biochem Bioeng 147:57

    Google Scholar 

  46. Iyer PV, Wu Z, Kim SB, Lee YY (1996) Appl Biochem Bioeng 121:57

    Google Scholar 

  47. Lee J (1997) J Biotechnol 56:1

    Article  CAS  Google Scholar 

  48. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani A (2004) Biotechnol Prog 20:200

    Article  CAS  Google Scholar 

  49. McMillan JD, Newman M, Templeton D, Mohagheghi A (1999) Appl Biochem Biotechnol 77–79:649

    Article  Google Scholar 

  50. Saddler JN, Yu EKC, Mes-Hartree M, Levitin N, Brownell HH (1985) Comm Eur Commun EUR10024:978

    Google Scholar 

  51. Sassner P, Galbe M, Zacchi G (2005) Appl Biochem Biotechnol 1101:121

    Google Scholar 

  52. Tharakan PJ, Volk TA, Abrahamson IP, White EH (2003) Biomass Bioenergy 25:571

    Article  CAS  Google Scholar 

  53. Alfani F (2000) J Ind Microbiol Biotechnol 25:184

    Article  CAS  Google Scholar 

  54. Ballesteros I, Negro MJ, Olvia JM, Cabanas A, Manzanerez P, Ballesteros M (2006) Appl Biochem Biotechnol 496:129

    Google Scholar 

  55. Curreli N (2002) Process Biochem 37:937

    Article  CAS  Google Scholar 

  56. Palmarola-Adrados B, Galbe M, Zacchi G (2004) Appl Biochem Biotechnol 113:989

    Article  Google Scholar 

  57. Saha BC, Iten IB, Cotta MA, Wu YV (2005) Process Biochem 40:3693

    Article  CAS  Google Scholar 

  58. Linde M, Galbe M, Zacchi G (2006) Appl Biochem Biotechnol 546:129

    Google Scholar 

  59. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Process Biochem 39:1843

    Article  CAS  Google Scholar 

  60. Laser MS, Schulman DE, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) Bioresour Technol 81:83

    Article  Google Scholar 

  61. Martin C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Enzyme Microb Technol 31:274

    Article  CAS  Google Scholar 

  62. Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Process Biochem 41:423

    Article  CAS  Google Scholar 

  63. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959

    Article  CAS  Google Scholar 

  64. Kim TH, Lee YY, Sunwoo C, Kim JS (2006) Appl Biochem Biotechnol 133:41

    Article  CAS  Google Scholar 

  65. Kim TH, Lee YY (2005) Bioresour Technol 96:2007

    Article  CAS  Google Scholar 

  66. Kaar WE, Holtzapple MT (2000) Biomass Bioenergy 18:189

    Article  CAS  Google Scholar 

  67. Kim S, Holtzapple MT (2005) Bioresour Technol 96:1994

    Article  CAS  Google Scholar 

  68. Varga E, Szengyel Z, Reczey K (2002) Appl Biochem Bioeng 98:73

    Google Scholar 

  69. Kálmán G, Varga E, Reczey K (2002) Chem Biochem Eng 16:151

    Google Scholar 

  70. Lloyd TA, Wyman CE (2005) Bioresour Technol 96:1967

    Article  CAS  Google Scholar 

  71. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Bioresour Technol 96:1986

    Article  CAS  Google Scholar 

  72. Varga E, Reczey K, Zacchi G (2004) Appl Biochem Biotechnol 509:113

    Google Scholar 

  73. Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Biomass Bioenergy 30:863

    Article  CAS  Google Scholar 

  74. Ohgren K, Galbe M, Zacchi G (2005) Appl Biochem Biotechnol 1055:121

    Google Scholar 

  75. Varga E, Schmidt AS, Reczey K, Thomsen AB (2003) Appl Biochem Biotechnol 104:37

    Article  CAS  Google Scholar 

  76. Varga E, Klinke B, Reczey K, Thomsen AB (2004) Biotechnol Bioeng 88:567

    Article  CAS  Google Scholar 

  77. Öhgren K, Bengtsson O, Gorwa-Grauslund M-F, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) J Biotechnol 126:488

    Article  CAS  Google Scholar 

  78. Öhgren K, Bura R, Saddler J, Zacchi G (2007) Bioresour Technol 98:2503

    Article  CAS  Google Scholar 

  79. Eggeman T, Elander RT (2005) Bioresour Technol 96:2019

    Article  CAS  Google Scholar 

  80. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959

    Article  CAS  Google Scholar 

  81. Aden A, Ruth MF, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) NREL/TP-510–32438. National Renewable Energy Labs, Golden, CO, USA

    Google Scholar 

  82. Clark TA, Mackie KLJ (1987) Wood Chem Technol 7:373

    Article  CAS  Google Scholar 

  83. Stenberg K, Tengborg C, Galbe M, Zacchi G (1998) J Chem Technol Biotechnol 71:299

    Article  CAS  Google Scholar 

  84. Tengborg C, Stenberg K, Galbe M, Zacchi G, Larsson S, Palmqvist E, Hahn-Hägerdal B (1998) Appl Biochem Biotechnol 70–72:3

    Article  Google Scholar 

  85. Söderström J, Pilcher L, Galbe M, Zacchi G (2002) Appl Biochem Biotechnol 98–100:5

    Article  Google Scholar 

  86. Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Biomass Bioenergy 24:475

    Article  CAS  Google Scholar 

  87. Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Appl Biochem Biotechnol 127:105

    Google Scholar 

  88. Nguyen QA, Tucker MP, Boynton BL, Keller FA, Schell DJ (1998) Appl Biochem Biotechnol 77:70

    Google Scholar 

  89. Schwald W, Smaridge T, Chan M, Breuil C, Saddler JN (1989) In: Coughlan MP (ed) Enzyme system. Comm Eur Commun. Elsevier, p 231

    Google Scholar 

  90. Wingren A, Söderström J, Galbe M, Zacchi G (2004) Biotechnol Prog 20:1421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Zacchi .

Editor information

Lisbeth Olsson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galbe, M., Zacchi, G. (2007). Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. In: Olsson, L. (eds) Biofuels. Advances in Biochemical Engineering/Biotechnology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2007_070

Download citation

Publish with us

Policies and ethics