Skip to main content

Dynamic Functions of the α6β4 Integrin in Carcinoma

  • Chapter
Cell Motility in Cancer Invasion and Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 8))

Abstract

The α6β4 integrin plays pivotal but distinct roles in the biology of epithelial and carcinoma cells. In healthy epithelia, its major function is to anchor the epithelium to the basement membrane as a component of either Type I or Type II hemidesmosomes. The signaling capacity of this integrin in the hemidesmosome appears to be minimal. Epithelial wounds or, more importantly, factors linked to malignant transformation and progression can induce dramatic changes in the function of α6β4. In fact, a scenario is emerging of how the function of α6β4 is altered in carcinoma. Factors in the host-tumor microenvironment have the potential to mobilize α6β4 from hemidesmosomes and promote its association with F-actin. This association with F-actin enables this integrin to function in cell migration and to harness traction forces on laminin-containing matrices such as basement membranes, a process that could contribute to the remodeling of basement membranes during tumor invasion. Importantly, this altered localization of α6β4 appears to be coupled to an activation of its signaling potential. The primal signaling event triggered by α6β4 appears to be activation of PI3-K. Although the mechanism by which this occurs needs to be deciphered in more detail, especially with respect to the involvement of growth factor receptors, α6β4-mediated activation of PI3-K and its effectors such as Akt, mTOR and Rac has profound consequences on the biology of carcinoma cells. Arguably, the ability of α6β4 to stimulate the translation of VEGF and possibly other growth factors may be the most significant contribution of this integrin to cancer because of the potential autocrine and paracrine effects of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behrens J. Cadherins and catenins: role in signal transduction and tumor progression. Cancer Metastasis Rev. 1999, 18: 15–30.

    Article  PubMed  CAS  Google Scholar 

  2. Birchmeier W, Hulsken J, Behrens J. E-cadherin as an invasion suppressor. Ciba Found Symp. 1995, 189: 124–36; discussion 136–41, 174–6.

    PubMed  CAS  Google Scholar 

  3. Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 2000, 87: 992–1005.

    Article  PubMed  CAS  Google Scholar 

  4. McCoy JP, Jr., et al. Identification of a laminin-like substance on the surface of high-malignant murine fibrosarcoma cells. J. Cell Sci. 1984, 65: 139–51.

    PubMed  CAS  Google Scholar 

  5. Barsky SH, et al. Laminin molecular domains which alter metastasis in a murine model. J. Clin. Invest. 1984, 74: 843–8.

    PubMed  CAS  Google Scholar 

  6. Wyckoff JB, et al. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 2000, 60: 2504–11.

    PubMed  CAS  Google Scholar 

  7. Kan Z, Liu TJ. Video microscopy of tumor metastasis: using the green fluorescent protein (GFP) gene as a cancer-cell-labeling system. Clinical & Experimental Metastasis 1999, 17: 49–55.

    Article  CAS  Google Scholar 

  8. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992, 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  9. Burridge K, et al. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annual Review of Cell Biology 1988, 4: 487–525.

    Article  PubMed  CAS  Google Scholar 

  10. DeMali KA, Wennerberg K, Burridge K, Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 2003, 15: 572–82.

    Article  PubMed  CAS  Google Scholar 

  11. Lee J, Jacobson K. The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes. J. Cell Sci. 1997, 110: 2833–44.

    PubMed  CAS  Google Scholar 

  12. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annual Review of Cell & Developmental Biology 1995, 11: 549–99.

    Article  CAS  Google Scholar 

  13. Alahari SK, Reddig PJ, Juliano RL. Biological aspects of signal transduction by cell adhesion receptors. Int. Rev. Cytol. 2002, 220: 145–84.

    PubMed  CAS  Google Scholar 

  14. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biology 2002, 4.

    Google Scholar 

  15. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 1994, 124: 619–26.

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz MA. Integrins, oncogenes, and anchorage independence. J. Cell Biol. 1997, 139: 575–8.

    Article  PubMed  CAS  Google Scholar 

  17. Hagios C, Lochter A, Bissell MJ, Tissue architecture: the ultimate regulator of epithelial function? Philos. Trans R. Soc. Lond. B. Biol. Sci. 1998, 353: 857–70.

    Article  PubMed  CAS  Google Scholar 

  18. Boudreau N, Bissell MJ. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell. Biol. 1998, 10: 640–6.

    Article  PubMed  CAS  Google Scholar 

  19. Fearon ER. Cancer progression. Curr. Biol. 1999, 9: R873–5.

    Article  PubMed  CAS  Google Scholar 

  20. Hanahan D, Weinberg R.A. The hallmarks of cancer. Cell 2000, 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  21. Giancotti FG, Ruoslahti E. Elevated levels of the alpha 5 beta 1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 1990, 60: 849–59.

    Article  PubMed  CAS  Google Scholar 

  22. Nip J, et al. Human melanoma cells derived from lymphatic metastases use integrin alpha v beta 3 to adhere to lymph node vitronectin. J. Clin. Invest. 1992, 90: 1406–13.

    PubMed  CAS  Google Scholar 

  23. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994, 264: 569–71.

    PubMed  CAS  Google Scholar 

  24. Brooks PC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996, 85: 683–93.

    Article  PubMed  CAS  Google Scholar 

  25. Mercurio AM. Laminin receptors-achieving specificity through cooperation. Trends Cell Biol. 1995, 5: 419–423.

    Article  PubMed  CAS  Google Scholar 

  26. Liotta LA, Rao CN, Wewer UM. Biochemical interactions of tumor cells with the basement membrane. Ann. Rev. Biochem. 1986, 55: 1037–57.

    Article  PubMed  CAS  Google Scholar 

  27. Green KJ, Jones JCR. Desmosomes and hemidesmosomes-structure and function of molecular components. FASEB Journal 1996, 10: 871–881.

    PubMed  CAS  Google Scholar 

  28. Borradori L, Sonnenberg A. Hemidesmosomes-Roles in adhesion, signaling and human diseases. Curr. Opin. Cell Biol. 1996, 8: 647–656.

    Article  PubMed  CAS  Google Scholar 

  29. Vidal F, et al. Integrin beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat. Genet. 1995, 10: 229–34.

    PubMed  CAS  Google Scholar 

  30. Dowling J, Yu QC, Fuchs E. Beta-4 Integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol. 1996, 134: 559–572.

    Article  PubMed  CAS  Google Scholar 

  31. Abdel-Ghany M, et al. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J. Biol. Chem. 2001, 276: 25438–46.

    Article  PubMed  CAS  Google Scholar 

  32. Abdel-Ghany M, et al. Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. J. Biol. Chem. 2002, 277: 34391–400.

    Article  PubMed  CAS  Google Scholar 

  33. Davis TL, et al. Identification of a novel structural variant of the alpha 6 integrin. J. Biol. Chem. 2001, 276: 26099–106.

    Article  PubMed  CAS  Google Scholar 

  34. Sonnenberg A, Modderman PW, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature 1988, 336: 487–9.

    Article  PubMed  CAS  Google Scholar 

  35. Hemler ME, Crouse C, Sonnenberg A. Association of the VLA alpha 6 subunit with a novel protein. A possible alternative to the common VLA beta 1 subunit on certain cell lines. J. Biol. Chem. 1989, 264: 6529–35.

    PubMed  CAS  Google Scholar 

  36. Suzuki S, Naitoh Y. Amino acid sequence of a novel integrin beta 4 subunit and primary expression of the mRNA in epithelial cells. Embo. J. 1990, 9: 757–63.

    PubMed  CAS  Google Scholar 

  37. Hogervorst F, et al. Cloning and sequence analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain. Embo. J. 1990, 9: 765–70.

    PubMed  CAS  Google Scholar 

  38. Nievers MG, et al. Ligand-independent role of the beta 4 integrin subunit in the formation of hemidesmosomes. J. Cell Sci. 1998, 111: 1659–72.

    PubMed  CAS  Google Scholar 

  39. Niessen CM, et al. A minimal region on the integrin beta4 subunit that is critical to its localization in hemidesmosomes regulates the distribution of HD1/plectin in COS-7 cells. J. Cell Sci. 1997, 110: 1705–16.

    PubMed  CAS  Google Scholar 

  40. Niessen CM, et al. Integrin alpha 6 beta 4 forms a complex with the cytoskeletal protein HD1 and induces its redistribution in transfected COS-7 cells. Mol. Biol. Cell 1997, 8: 555–66.

    PubMed  CAS  Google Scholar 

  41. Nievers MG, et al. Formation of hemidesmosome-like structures in the absence of ligand binding by the (alpha)6(beta)4 integrin requires binding of HD1/plectin to the cytoplasmic domain of the (beta)4 integrin subunit. J. Cell Sci. 2000, 113: 963–73.

    PubMed  CAS  Google Scholar 

  42. Rezniczek GA, et al. Linking integrin alpha6beta4-based cell adhesion to the intermediate filament cytoskeleton: direct interaction between the beta4 subunit and plectin at multiple molecular sites. J. Cell Biol. 1998, 141: 209–25.

    Article  PubMed  CAS  Google Scholar 

  43. Borradori L, et al. The localization of bullous pemphigoid antigen 180 (BP180) in hemidesmosomes is mediated by its cytoplasmic domain and seems to be regulated by the beta4 integrin subunit. J. Cell Biol. 1997, 136: 1333–47.

    Article  PubMed  CAS  Google Scholar 

  44. Koster J, et al. Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J. Cell Sci. 2003, 116: 387–99.

    Article  PubMed  CAS  Google Scholar 

  45. Borradori L, Sonnenberg A. Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest Dermatol. 1999, 112: 411–8.

    Article  PubMed  CAS  Google Scholar 

  46. Hieda Y, et al. Identification of a new hemidesmosomal protein, HD1: a major, high molecular mass component of isolated hemidesmosomes. J. Cell Biol. 1992, 116: 1497–506.

    Article  PubMed  CAS  Google Scholar 

  47. Uematsu J, et al. Demonstration of type II hemidesmosomes in a mammary gland epithelial cell line, BMGE-H. J. Biochem. 1994, 115: 469–76.

    PubMed  CAS  Google Scholar 

  48. Rabinovitz I, Mercurio AM. The integrin alpha 6 beta 4 and the biology of carcinoma. Biochem. Cell Biol. 1996, 74: 811–21.

    CAS  Google Scholar 

  49. Falcioni R, et al. Expression of tumor antigen correlated with metastatic potential of Lewis lung carcinoma and B16 melanoma clones in mice. Cancer Res. 1986, 46: 5772–8.

    PubMed  CAS  Google Scholar 

  50. Kennel SJ, et al. Analysis of the tumor-associated antigen TSP-180. Identity with alpha 6-beta 4 in the integrin superfamily. J. Biol. Chem. 1989, 264: 15515–21.

    PubMed  CAS  Google Scholar 

  51. Tennenbaum T, et al. The suprabasal expression of alpha 6 beta 4 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis. Cancer Res. 1993, 53: 4803–10.

    PubMed  CAS  Google Scholar 

  52. Van Waes C, et al. The A9 antigen associated with aggressive human squamous carcinoma is structurally and functionally similar to the newly defined integrin alpha 6 beta 4. Cancer Res. 1991, 51: 2395–402.

    PubMed  Google Scholar 

  53. Falcioni, R., et al. Integrin beta 4 expression in colorectal cancer. Int. J. Oncol. 1994, 5: 573–578.

    Google Scholar 

  54. Serini G, et al. Changes In Integrin and E-Cadherin Expression In Neoplastic Versus Normal Thyroid Tissue. J. Natl. Cancer Inst. 1996, 88: 442–449.

    PubMed  CAS  Google Scholar 

  55. Knox JD, et al. Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate. Am. J. Pathol. 1994, 145: 167–74.

    PubMed  CAS  Google Scholar 

  56. Hao J, et al. Investigation into the mechanism of the loss of laminin 5 (alpha3beta3gamma2) expression in prostate cancer. Am. J. Pathol. 2001, 158: 1129–35.

    PubMed  CAS  Google Scholar 

  57. Witkowski CM, et al. Characterization of integrin subunits, cellular adhesion and tumorgenicity of four human prostate cell lines. J. Cancer Res. Clin. Oncol. 1993, 119: 637–44.

    Article  PubMed  CAS  Google Scholar 

  58. Lipscomb EA, et al. Use of RNA interference to inhibit integrin (alpha6beta4)-mediated invasion and migration of breast carcinoma cells. Clin. Exp. Metastasis 2003, 20: 569–76.

    Article  PubMed  CAS  Google Scholar 

  59. O’Connor KL, Shaw LM, Mercurio AM. Release of cAMP gating by the alpha 6 beta 4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J. Cell Biol. 1998, 143: 1749–1760.

    Article  PubMed  CAS  Google Scholar 

  60. Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 2001, 107: 643–54.

    Article  PubMed  CAS  Google Scholar 

  61. Bachelder RE, et al. p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J. Cell Biol. 1999, 147: 1063–72.

    Article  PubMed  CAS  Google Scholar 

  62. Bachelder RE, et al. The cleavage of Akt/protein kinase B by death receptor signaling is an important event in detachment-induced apoptosis. J. Biol. Chem. 2001, 276: 34702–7.

    Article  PubMed  CAS  Google Scholar 

  63. Chung J, et al. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J. Cell Biol. 2002, 158: 165–74.

    Article  PubMed  CAS  Google Scholar 

  64. Bachelder RE, et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res. 2001, 61: 5736–40.

    PubMed  CAS  Google Scholar 

  65. Colognato H, et al. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat. Cell Biol. 2002, 4: 833–41.

    Article  PubMed  CAS  Google Scholar 

  66. Datta SR, Brunet A, Greenberg ME, Cellular survival: a play in three Akts. Genes. Dev. 1999, 13: 2905–27.

    Article  PubMed  CAS  Google Scholar 

  67. Weaver VM, et al. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002, 2: 205–16.

    Article  PubMed  CAS  Google Scholar 

  68. Zahir N, et al. Autocrine laminin-5 ligates alpha6beta4 integrin and activates RAC and NFkappaB to mediate anchorage-independent survival of mammary tumors. J. Cell Biol. 2003, 163: 1397–407.

    Article  PubMed  CAS  Google Scholar 

  69. Rossen K, et al. Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential? Acta. Derm Venereol. 1994, 74: 101–5.

    PubMed  CAS  Google Scholar 

  70. Dajee M, et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003, 421: 639–43.

    Article  PubMed  CAS  Google Scholar 

  71. Owens DM, et al. Suprabasal alpha6beta4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFbeta signalling. J. Cell Sci. 2003, 116: 3783–91.

    Article  PubMed  CAS  Google Scholar 

  72. Rabinovitz I, Mercurio AM. The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J. Cell Biol. 1997, 139: 1873–84.

    Article  PubMed  CAS  Google Scholar 

  73. Mainiero F, et al. The intracellular functions of alpha6beta4 integrin are regulated by EGF. J. Cell Biol. 1996, 134: 241–53.

    Article  PubMed  CAS  Google Scholar 

  74. Rabinovitz I, Toker A, Mercurio AM. Protein kinase C-dependent mobilization of the alpha6beta4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J. Cell Biol. 1999, 146: 1147–60.

    Article  PubMed  CAS  Google Scholar 

  75. Larjava H, et al. Expression of integrins and basement membrane components by wound keratinocytes. J. Clin. Invest. 1993, 92: 1425–35.

    Article  PubMed  CAS  Google Scholar 

  76. Gipson IK, et al. Redistribution of the hemidesmosome components alpha 6 beta 4 integrin and bullous pemphigoid antigens during epithelial wound healing. Exp. Cell Res. 1993, 207: 86–98.

    Article  PubMed  CAS  Google Scholar 

  77. Lotz MM, Rabinovitz I, Mercurio AM. Intestinal restitution: progression of actin cytoskeleton rearrangements and integrin function in a model of epithelial wound healing. Am. J. Pathol. 2000, 156: 985–96.

    PubMed  CAS  Google Scholar 

  78. Nguyen BP, Gil SG, Carter WG. Deposition of laminin 5 by keratinocytes regulates integrin adhesion and signaling. J. Biol. Chem. 2000, 275: 31896–907.

    Article  PubMed  CAS  Google Scholar 

  79. Spinardi L, et al. A dynamic podosome-like structure of epithelial cells. Exp. Cell Res. 2004, 295: 360–74.

    Article  PubMed  CAS  Google Scholar 

  80. Wiche G. Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 1998, 111: 2477–86.

    PubMed  CAS  Google Scholar 

  81. Geerts D, et al. Binding of integrin alpha6beta4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J. Cell Biol. 1999, 147: 417–34.

    Article  PubMed  CAS  Google Scholar 

  82. Tozeren A, et al. Integrin alpha 6 beta 4 mediates dynamic interactions with laminin. J. Cell Sci. 1994, 107: 3153–63.

    PubMed  CAS  Google Scholar 

  83. Albrecht-Buehler G. Filopodia of spreading 3T3 cells. Do they have a substrate-exploring function? J. Cell Biol. 1976, 69: 275–86.

    Article  PubMed  CAS  Google Scholar 

  84. O’Connor TP, Duerr JS, Bentley D. Pioneer growth cone steering decisions mediated by single filopodial contacts in situ. J. Neurosci. 1990, 10: 3935–46.

    PubMed  CAS  Google Scholar 

  85. Rabinovitz I, Gipson IK, Mercurio AM. Traction forces mediated by alpha6beta4 integrin: implications for basement membrane organization and tumor invasion. Mol. Biol. Cell 2001, 12: 4030–43.

    PubMed  CAS  Google Scholar 

  86. Klein CE, et al. Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J. Cell Biol. 1991, 115: 1427–36.

    Article  PubMed  CAS  Google Scholar 

  87. Silletti S, Paku S, Raz A. Autocrine motility factor and the extracellular matrix. II. Degradation or remodeling of substratum components directs the motile response of tumor cells. Int. J. Cancer 1998, 76: 129–35.

    Article  PubMed  CAS  Google Scholar 

  88. Friedl P, et al. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res. 1997, 57: 2061–70.

    PubMed  CAS  Google Scholar 

  89. Rabinovitz I, Tsomo L, Mercurio AM. Protein kinase C-alpha phosphorylation of specific serines in the connecting segment of the beta 4 integrin regulates the dynamics of type II hemidesmosomes. Mol. Cell Biol. 2004, 24: 4351–60.

    Article  PubMed  CAS  Google Scholar 

  90. Dans M, et al. Tyrosine phosphorylation of the beta 4 integrin cytoplasmic domain mediates Shc signaling to extracellular signal-regulated kinase and antagonizes formation of hemidesmosomes. J. Biol. Chem. 2001, 276: 1494–502.

    Article  PubMed  CAS  Google Scholar 

  91. Mariotti A, et al. EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J. Cell Biol. 2001, 155: 447–58.

    Article  PubMed  CAS  Google Scholar 

  92. Foisner R, Traub P, Wiche G. Protein kinase A-and protein kinase C-regulated interaction of plectin with lamin B and vimentin. Proc. Natl. Acad. Sci. USA 1991, 88: 3812–6.

    Article  PubMed  CAS  Google Scholar 

  93. Schaapveld RQ, et al. Hemidesmosome formation is initiated by the beta4 integrin subunit, requires complex formation of beta4 and HD1/plectin, and involves a direct interaction between beta4 and the bullous pemphigoid antigen 180. J. Cell Biol. 1998, 142: 271–84.

    Article  PubMed  CAS  Google Scholar 

  94. Santoro MM, Gaudino G, Marchisio PC. The MSP receptor regulates alpha 6 beta 4 and alpha 3 beta 1 integrins via 14-3-3 proteins in keratinocyte migration. Dev. Cell 2003, 5: 257–271.

    Article  PubMed  CAS  Google Scholar 

  95. Tsuruta D, Hopkinson SB, Jones JC. Hemidesmosome protein dynamics in live epithelial cells. Cell Motil Cytoskeleton. 2003, 54: 122–34.

    Article  PubMed  CAS  Google Scholar 

  96. Geuijen CA, Sonnenberg A. Dynamics of the alpha6beta4 integrin in keratinocytes. Mol. Biol. Cell 2002, 13: 3845–58.

    Article  PubMed  CAS  Google Scholar 

  97. Shaw LM, et al. Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 1997, 91: 949–60.

    Article  PubMed  CAS  Google Scholar 

  98. Gagnoux-Palacios L, et al. Compartmentalization of integrin alpha6beta4 signaling in lipid rafts. J. Cell Biol. 2003, 162: 1189–96.

    Article  PubMed  CAS  Google Scholar 

  99. Gambaletta D, et al. Cooperative signaling between alpha(6)beta(4) integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J. Biol. Chem. 2000, 275: 10604–10.

    Article  PubMed  CAS  Google Scholar 

  100. Hintermann E, et al. Inhibitory Role of alpha6beta4-associated erbB-2 and Phosphoinositide 3-Kinase in Keratinocyte Haptotactic Migration Dependent on alpha3beta1 Integrin. J. Cell Biol. 2001, 153: 465–78.

    Article  PubMed  CAS  Google Scholar 

  101. Russell AJ, et al. Alpha 6 beta 4 integrin regulates keratinocyte chemotaxis through differential GTPase activation and antagonism of alpha 3 beta 1 integrin. J. Cell Sci. 2003, 116: 3543–56.

    Article  PubMed  CAS  Google Scholar 

  102. Shaw LM. Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the alpha6beta4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion. Mol. Cell Biol. 2001, 21: 5082–93.

    Article  PubMed  CAS  Google Scholar 

  103. Falcioni R, et al. Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp. Cell Res. 1997, 236: 76–85.

    Article  PubMed  CAS  Google Scholar 

  104. Riese DJ. 2nd and Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays. 1998, 20: 41–8.

    Article  PubMed  Google Scholar 

  105. Comoglio PM, Trusolino L. Invasive growth: from development to metastasis. J. Clin. Invest. 2002, 109: 857–62.

    Article  PubMed  CAS  Google Scholar 

  106. Chung J, et al. The Met receptor and alpha 6 beta 4 integrin can function independently to promote carcinoma invasion. J. Biol. Chem. 2004, 279: 32287–93.

    Article  PubMed  CAS  Google Scholar 

  107. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes. Dev. 2001, 15: 807–26.

    Article  PubMed  CAS  Google Scholar 

  108. Shaw RJ, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004, 6: 91–9.

    Article  PubMed  CAS  Google Scholar 

  109. Jauliac S, et al. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat. Cell Biol. 2002, 4: 540–4.

    Article  PubMed  CAS  Google Scholar 

  110. Mercurio AM, Rabinovitz I. Towards a mechanistic understanding of tumor invasion—lessons from the alpha6beta 4 integrin. Semin. Cancer Biol. 2001, 11: 129–41.

    Article  PubMed  CAS  Google Scholar 

  111. Savoia P, et al. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of alpha 6 beta 4 and BM-600/nicein. J. Invest. Dermatol. 1993, 101: 352–8.

    Article  PubMed  CAS  Google Scholar 

  112. Rossen K, et al. Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential? Acta. Derm. Venereol. 1994, 74: 101–5.

    PubMed  CAS  Google Scholar 

  113. Korman NJ, Hrabovsky SL. Basal cell carcinomas display extensive abnormalities in the hemidesmosome anchoring fibril complex. Exp. Dermatol. 1993, 2: 139–44.

    Article  PubMed  CAS  Google Scholar 

  114. Carico E, et al. Integrin beta 4 expression in the neoplastic progression of cervical epithelium. Gynecol. Oncol. 1993, 49: 61–6.

    Article  PubMed  CAS  Google Scholar 

  115. Skubitz AP, et al. Expression of alpha 6 and beta 4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am. J. Pathol. 1996, 148: 1445–61.

    PubMed  CAS  Google Scholar 

  116. Gui GP, et al. Integrin expression in primary breast cancer and its relation to axillary nodal status. Surgery 1995, 117: 102–8.

    Article  PubMed  CAS  Google Scholar 

  117. Costantini RM, et al. Integrin (alpha 6/beta 4) expression in human lung cancer as monitored by specific monoclonal antibodies. Cancer Res. 1990, 50: 6107–12.

    CAS  Google Scholar 

  118. Cress AE, et al. The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev. 1995, 14: 219–28.

    Article  PubMed  CAS  Google Scholar 

  119. Nagle RB, et al. Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am. J. Pathol. 1995, 146: 1498–507.

    PubMed  CAS  Google Scholar 

  120. Grossman HB, et al. Expression of the alpha6beta4 integrin provides prognostic information in bladder cancer. Oncol. Rep. 2000, 7: 13–6.

    PubMed  CAS  Google Scholar 

  121. Hall PA, et al. Characterization of integrin chains in normal and neoplastic human pancreas. J. of Pathol. 1991, 165: 33–41.

    Article  CAS  Google Scholar 

  122. Weinel RJ, et al. The alpha 6-integrin receptor in pancreatic carcinoma. Gastroenterology 1995, 108: 523–32.

    Article  PubMed  CAS  Google Scholar 

  123. Logsdon CD, et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. [erratum appears in Cancer Res. 2003 Jun 15;63(12):3445]. Cancer Res. 2003, 63: 2649–57.

    PubMed  CAS  Google Scholar 

  124. Tani T, et al. Alpha(6)Beta(4) Integrin and Newly Deposited Laminin-1 and Laminin-5 Form the Adhesion Mechanism Of Gastric Carcinoma-Continuous Expression Of Laminins But Not That Of Collagen Vii Is Preserved In Invasive Parts Of the Carcinomas-Implications For Acquisition Of the Invading Phenotype. Am. J. Pathol. 1996, 149: 781–793.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Rabinovitz, I., Mercurio, A.M. (2006). Dynamic Functions of the α6β4 Integrin in Carcinoma. In: Wells, A. (eds) Cell Motility in Cancer Invasion and Metastasis. Cancer Metastasis - Biology and Treatment, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4009-1_8

Download citation

Publish with us

Policies and ethics