Skip to main content

The Plant Growth-Promoting Effect and Plant Responses

  • Chapter

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 5))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbass, Z., and Okon Y. (1993). Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil Biol. Biochem., 25, 1075-1083.

    Article  Google Scholar 

  • Al-Mallah, M. K., Davey, M. R., and Cocking E. C. (1990). Nodulation of oilseed rape (Brassica napus) by rhizobia. J. Exp. Bot., 1, 1567-1572.

    Article  Google Scholar 

  • Alvarez, M. I., Sueldo, R. J., and Barassi C. A. (1996). Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal Res. Commun., 24, 101-107.

    Google Scholar 

  • Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R., and Lalande R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil, 204, 57-67.

    Article  CAS  Google Scholar 

  • Baldani, V. L. D., Baldani, J. I., and Döbereiner, J. (1983). Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol., 29, 924-929.

    Article  Google Scholar 

  • Bandurski, R. S. (1980). Homeostatic control of concentration of indole-3-acetic acid. In F. Skoog (Ed.), Plant growth substances (pp. 37-49). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Barber, S. A. (1985). Potassium availability at the soil-root interface and factors influencing potassium uptake. In R.D. Munson (Ed.), Potassium in agriculture (pp. 309-324). Madison, WI: ASA, CSSA, SSSA.

    Google Scholar 

  • Barbieri, P., Baggio, C., Bazzicalupo, M., Galli, E., Zanetti, G., and Nuti M. P. (1991). Azospirillum-gramineae interaction: Effect of indole-3-acetic acid. In M. Polsinelli, R. Materassi, and M. Vincenzini (Eds.), Nitrogen fixation (pp. 161-168). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Barbieri, P., Zanelli, T., Galli, E., and Zanetti G. (1986). Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol. Lett., 36, 87-90.

    Article  CAS  Google Scholar 

  • Barbieri, P., Bernardi, A., Galli, E., and Zanetti G. (1988). Effect of inoculation with different strains of Azospirillum brasilense on wheat root development. In W. Klingmüller (Ed.), Azospirillum IV: Genetics, physiology, ecology (pp. 181-188). Berlin, Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Barea, J. M., and Brown M. E. (1974). Effects on plant produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J. App. Bacteriol., 37, 583-593.

    CAS  Google Scholar 

  • Barton, L. L., Johnson, G. V., and Miller S. O. (1986). The effect of Azospirillum brasilense on iron absorption and translocation by sorghum. J. Plant Nutr., 9, 557-565.

    Google Scholar 

  • Bashan, Y. (1991). Changes in membrane potential of intact soybean root elongation zone cells induced by Azospirillum brasilense. Can. J. Microbiol., 37, 958-963.

    Article  Google Scholar 

  • Bashan, Y., and Levanony H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol., 36, 591-608.

    Article  CAS  Google Scholar 

  • Bashan, Y., Levanony, H., and Mitiku G. (1989). Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Can. J. Microbiol., 35, 691-697.

    Article  CAS  Google Scholar 

  • Bastian, F., Rapparini, F., Baraldi, R., Piccoli, P., and Bottini R. (1999). Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoot of Sorghum bicolor (L.) Moench. Symbiosis, 27, 147-156.

    CAS  Google Scholar 

  • Becker, D., Stanke, R., Fendrik, I., Frommer, W. B., Vanderleyden, J., Kaiser, W. M., et al. (2002). Expression of the NH4 +-transporter gene LEAMT1;2 is induced in tomato roots upon association with N2-fixing bacteria. Planta, 215, 424-429.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, J. C., Ladha, J. K., and Dazzo F. B. (2000). Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. Amer. J., 64, 1644-1650.

    Article  CAS  Google Scholar 

  • Boddey, R. M., Baldani, V. L. D., Baldani, J. I., and Döbereiner, J. (1986). Effect of inoculation of Azospirillum spp. on the nitrogen accumulation of field grown wheat. Plant Soil, 95, 109-121.

    Article  Google Scholar 

  • Boddey, R. M., and Döbereiner, J. (1988). Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for future research. Plant Soil, 108, 53-65.

    Article  Google Scholar 

  • Burdman, S., Jurkevitch, E., and Okon Y. (2000). Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In N.S. Subba Rao, and Y.R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (Vol. II, pp. 229-250). Plymouth, UK: Science Publishers.

    Google Scholar 

  • Burdman, S., Kigel, J., and OkonY. (1997). Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L). Soil Biol. Biochem., 29, 923-929.

    Article  CAS  Google Scholar 

  • Burdman, S., Volpin, H., Kigel, J., Kapulnik, Y., and Okon Y. (1996). Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl. Environ. Microbiol., 62, 3030-3033.

    PubMed  CAS  Google Scholar 

  • Burns, Jr., T. A., Bishop, P. E., and Israel D. W. (1981). Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandii and Rhizobium. Plant Soil, 62, 399-412.

    Article  Google Scholar 

  • Campos, N., Bako, L., Brzobohaty, B., Feldwisch, J., Zettl, R., Boland, W., et al. (1993). Identification and characterization of a novel phytohormone conjugate specific β-glucosidase activity in maize. In A. Esen (Ed.), β-Glucosidases: Biochemistry and molecular biology (pp. 205-213). Washington, DC: American Chemical Society.

    Google Scholar 

  • Creus, C., Sueldo, R., and Barassi C. (1997). Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol. Biochem., 35, 939-944.

    CAS  Google Scholar 

  • Creus, C. M., Sueldo, R. J., and Barassi C. A. (1998). Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can. J. Bot., 76, 238-244.

    Article  Google Scholar 

  • Davison, J. (1988). Plant beneficial bacteria. Bio/Technology, 6, 282-286.

    Article  CAS  Google Scholar 

  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Okon, Y., and Vanderleyden, J. (2002). Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and N-content of spring wheat and grain maize. Biol. Fertil. Soils, 36,284-297.

    Article  CAS  Google Scholar 

  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., et al. (2001). Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol., 28, 871-879.

    Google Scholar 

  • Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., and Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil, 212, 155-164.

    Article  CAS  Google Scholar 

  • Dobbelaere, S., Vanderleyden, J., and Okon Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Critical Rev. Plant Sci., 22, 107-149.

    CAS  Google Scholar 

  • Döbereiner, J. (1992). History and perspectives of diazotrophs in association with non leguminous plants. Symbiosis, 13, 1-13.

    Google Scholar 

  • Döbereiner, J., and Day J. M. (1976). Associative symbioses in tropical grasses: Characterisation of micro-organisms and dinitrogen-fixing sites. In W. E. Newton and C. J. Nyman (Eds.), Proc. 1 st intern. symp. on nitrogen fixation (pp. 518-538). Pullman, WA: Washington State University Press.

    Google Scholar 

  • Epstein, E., Cohen, J. D., and Bandurski R. S. (1980). Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol., 65, 415-421.

    PubMed  CAS  Google Scholar 

  • Fages, J. (1994). Azospirillum inoculants and field experiments. In Y. Okon (Ed.), Azospirillum /plant associations (pp. 87-110). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Fallik, E., Okon, Y., Epstein, E., Goldman, A., and Fischer M. (1989). Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots. Soil Biol. Biochem., 21, 147-153.

    Article  CAS  Google Scholar 

  • Fallik, E., Okon, Y., and Fischer M. (1988). The effect of Azospirillum brasilense inoculation on metabolic enzyme activity in maize root seedlings. Symbiosis, 6, 17-28.

    Google Scholar 

  • Fallik, E., Sarig, S., and Okon Y. (1994). Morphology and physiology of plant roots associated with Azospirillum. In Y. Okon (Ed.), Azospirillum /plant associations (pp. 77-86). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Fulchieri, M., Lucangeli, C., and Bottini R. (1993). Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol., 34, 1305-1309.

    CAS  Google Scholar 

  • Gahoonia, T. S., and Nielsen N. E. (1998). Direct evidence on participation of root hairs in phosphorus (P-32) uptake from soil. Plant Soil, 198, 147-152.

    Article  CAS  Google Scholar 

  • Gahoonia, T. S., Nielsen, N. E., Joshi, P. A., and Jahoor A. (2001). A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil, 235, 211-219.

    Article  CAS  Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 41, 109-117.

    CAS  Google Scholar 

  • Glick, B. R., Jacobsen, C. B., Schwarze, M. M. K., and Pasternak J. J. (1994). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol., 40, 911-915.

    CAS  Google Scholar 

  • Glick, B. R., Liu, C. P., Ghosh, S., and Dumbroff E. B. (1997). Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol. Biochem., 29, 1233-1239.

    Article  CAS  Google Scholar 

  • Glick, B. R., Penrose, D. M., and Li J. (1998). A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 190, 63-68.

    Article  PubMed  CAS  Google Scholar 

  • Gunarto, L., Adachi, K., and Senboku T. (1999). Isolation and selection of indigenous Azospirillum spp. from a subtropical island, and effect of inoculation on growth of lowland rice under several levels of N application. Biol. Fertil. Soils, 28, 129-135.

    Article  Google Scholar 

  • Hadas, R. and Okon, Y. (1987). Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol. Fertil. Soils, 5, 241-247.

    Article  Google Scholar 

  • Hall, J. A., Peirson, D., Ghosh, S., and Glick B. R. (1996). Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Israel J. Plant Sci., 44, 37-42.

    Google Scholar 

  • Hamaoui, B., Abbadi, J. M., Burdman, S., Rashid, A., Sarig, S., and Okon Y. (2001). Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie, 21, 553-560.

    Article  Google Scholar 

  • Harari, A., Kigel, J., and Okon Y. (1988). Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil, 110, 275-282.

    Article  CAS  Google Scholar 

  • Hartwig, U. A., and Phillips D. A. (1991). Release and modification of nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol., 95, 804-807.

    PubMed  CAS  Google Scholar 

  • Holl, F. B., Chanway, C. P., Turkington, R., and Radley R. A. (1988). Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem., 20, 19-24.

    Article  CAS  Google Scholar 

  • Honma, M., and Shimomura T. (1978). Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agri. Biol. Chem., 2, 1825-1831.

    Google Scholar 

  • Hussain, A., Arshad, M., Hussain, A. and Hussain, F. (1987). Response of maize (Zea mays) to Azotobacter inoculation under fertilized and unfertilized conditions. Biol. Fertil. Soils, 4, 73-77.

    Google Scholar 

  • Hussain, A., and Khan M. I. (1973). Effect of Azotobacter inoculation on maize yield and composition. Pakistan J. Scientific Res., 5, 12-16.

    Google Scholar 

  • Iruthayathas, E. E., Gunasekaran, S., and Vlassak K. (1983). Effect of combined inoculation of Azospirillum and Rhizobium on nodulation and N2-fixation of winged bean and soybean. Sci. Hortic. (Amsterdam), 20, 231-240.

    Article  Google Scholar 

  • Itzigsohn, R., Kapulnik, Y., Okon, Y., and Dovrat A. (1993). Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can. J. Microbiol., 9, 610-615.

    Article  Google Scholar 

  • Jain, D. K., and Patriquin D. G. (1984). Root hair deformation, bacterial attachment, and plant growth in wheat-Azospirillum associations. Appl. Environ. Microbiol., 8, 1208-1213.

    Google Scholar 

  • Jain, D. K., and Patriquin D. G. (1985). Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can. J. Microbiol., 1, 206-210.

    Article  Google Scholar 

  • Kapulnik, Y., Gafny, R., and Okon Y. (1985a). Effect of Azospirillum spp. inoculation on root development and NO3– uptake in wheat (Triticum aestivum cv. Miriam) in hydroponic systems. Can. J. Bot., 3, 627-631.

    Article  Google Scholar 

  • Kapulnik, Y., Okon, Y., and Henis Y. (1985b). Changes in root morphology of wheat caused by Azospirilluminoculation. Can. J. Microbiol., 1, 881-887.

    Article  Google Scholar 

  • Kapulnik, Y., Okon, Y., and Henis Y. (1987). Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasilense under field conditions. Biol. Fertil. Soils, 4, 27-35.

    Google Scholar 

  • Kapulnik, Y., Sarig, S., Nur, I., and Okon Y. (1983). Effect of Azospirillum inoculation on yield of field-grown wheat. Can. J. Microbiol., 9, 895-899.

    Article  Google Scholar 

  • Kapulnik, Y., Sarig, S., Nur, I., Okon, Y., and Henis Y. (1982). The effect of Azospirillum inoculation on growth and yield of corn. Israel J. Bot., 1, 247-255.

    Google Scholar 

  • Kapulnik, Y., Sarig, S., Nur, I., Okon, Y., Kigel J., and Henis Y. (1981). Yield increases in summer cereal crops in Israeli fields inoculated with Azospirillum. Exp. Agri., 7, 179-187.

    Google Scholar 

  • Kloepper, J. W., Lifshitz, R., and Zablotowicz R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol., 7, 39-43.

    Article  Google Scholar 

  • Kolb, W., and Martin P. (1985). Response of plant roots to inoculation with Azospirillum brasilense and to application of indoleacetic acid. In W. Klingmüller (Ed.), Azospirillum III: Genetics, physiology, ecology (pp. 215-221). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Kucey, R. M. N. (1988). Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars. J. Appl. Bacteriol., 4, 187-196.

    Google Scholar 

  • Levanony, H., and Bashan Y. (1989). Enhancement of cell division in wheat root tips and growth of root elongation zone induced by Azospirillum brasilense Cd. Can. J. Bot., 7, 2213-2216.

    Google Scholar 

  • Lifshitz, R., Kloepper, J. W., Kozlowski, M., Simonson, C., Carlson, J., Tipping, E. M., et al. (1987). Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol., 3, 390-395.

    Article  Google Scholar 

  • Lin, W., Okon, Y., and Hardy R. W. F. (1983). Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol., 5, 1775-1779.

    Google Scholar 

  • Long, S.R. (1989). Rhizobium-legume nodulation: Life together in the underground. Cell, 6, 203-214.

    Article  Google Scholar 

  • Ma, J.-H., Yao, J.-L., Cohen, D., and Morris B. (1998). Ethylene inhibitors enhance in vitro formation from apple shoot cultures. Plant Cell Reports, 7, 211-214.

    Article  Google Scholar 

  • Marschner, H., Römheld, V., Horst, W. J., and Martin P. (1986). Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Z. Pflanz. Bodenkunde, 9, 441-456.

    Article  Google Scholar 

  • Martin, P., and Glatzle A. (1982). Mutual influences of Azospirillum spp. and grass seedlings. In W. Klingmüller (Ed.), Azospirillum , genetics, physiology, ecology (pp.108-120). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Mattoo, A. K., and Suttle C. S. (1991). The plant hormone ethylene. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Mishustin, E. N., and Shilnikova V. K. (1968). Biological fixation of atmospheric nitrogen. Plant Soil, 2, 545-554.

    Google Scholar 

  • Morgenstern, E., and Okon Y. (1987a). The effect of Azospirillum brasilense on root morphology in seedlings of Sorghum bicolor x Sorghum sudanense. Arid Soil Res. Rehabil., 1, 115-127.

    Google Scholar 

  • Morgenstern, E., and Okon Y. (1987b). Promotion of plant growth and NO3– and Rb+ uptake in Sorghum bicolor x Sorghum sudanense inoculated with Azospirillum brasilense Cd. Arid Soil Res. Rehabil., 1, 211-217.

    Google Scholar 

  • Müller, M., Deigele, C., and Ziegler H. (1989). Hormonal interactions in the rhizosphere of maize (Zea mays L.) and their effects on plant development. Z. Pflanz. Bodenkunde, 2, 247-254.

    Article  Google Scholar 

  • Murty, M. G., and Ladha J. K. (1988). Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil, 8, 281-285.

    Article  Google Scholar 

  • Nickell, L. G. (1988). Plant growth regulator use in cane and sugar production update. Sugar J., 0, 7-11.

    Google Scholar 

  • Noel, T. C., Sheng, C., Yost, C. K., Pharis, R. P., and Hynes M. F. (1996). Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can. J. Microbiol., 2, 279-283.

    Article  Google Scholar 

  • Nonhebel, H. M., Hillman, J. R., Crozier, A., and Wilkins M. B. (1985). Metabolism of [14C]indole-3-acetic acid by coleoptiles of Zea mays L. J. Exp. Bot., 36, 99-109.

    Article  CAS  Google Scholar 

  • Nowacki, J., and Bandurski R. S. (1980). Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol., 5, 422-427.

    Google Scholar 

  • Okon, Y. (1984). Response of cereal and forage grasses to inoculation with N2-fixing bacteria. In C. Veeger and W. E. Newton (Eds.), Advances in nitrogen fixation research (pp. 303-309). The Hague, The Netherlands: Martinus Nijhoff/Dr. W. Junk/Pudoc.

    Google Scholar 

  • Okon, Y. (1985). Azospirillum as a potential inoculant for agriculture. Trends in Biotechnol., 3, 223-228.

    Article  Google Scholar 

  • Okon, Y., and Itzigsohn R. (1995). The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol. Adv., 3, 415-424.

    Article  Google Scholar 

  • Okon, Y., Itzigsohn, R., Burdman, S., and Hampel M. (1995). Advances in agronomy and ecology of the Azospirillum/plant association. In I. A. Tikhonovich, N. A. Provorov, V. I. Romanov, and W. E. Newton (Eds.), Nitrogen fixation: Fundamentals and applications (pp. 635-640). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Okon, Y., and Kapulnik Y. (1986). Development and function of Azospirillum inoculated roots. Plant Soil, 0, 3-16.

    Article  Google Scholar 

  • Okon, Y., and Labandera-Gonzalez, C. A. (1994). Agronomic applications of Azospirillum – an evaluation of 2[0000] years worldwide field inoculation. Soil Biol. Biochem., 6, 1591-1601.

    Article  Google Scholar 

  • Pacovsky, R. S. (1990). Development and growth effects in the Sorghum-Azospirillum association. J. Appl. Bacteriol., 68,555-563.

    Google Scholar 

  • Pacovsky, R. S., Paul, E. A., and Bethlenfalvay G. J. (1985). Nutrition of sorghum plants with nitrogen or inoculated with Azospirillum brasilense. Plant Soil, 85, 145-148.

    CAS  Google Scholar 

  • Pandey, A., Sharma, E., and Palni L. M. S. (1998). Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol. Biochem., 0, 379-384.

    Article  Google Scholar 

  • Patriquin, D. G., Döbereiner, J., and Jain D. K. (1983). Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol., 9, 900-915.

    Article  Google Scholar 

  • Petersen, D. J., Srinivasan, M., and Chanway C. P. (1996). Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol. Lett., 2, 271-276.

    Article  Google Scholar 

  • Piccoli, P., Lucangeli, C., Schneider, G., and Bottini R. (1997). Hydrolysis of [17,17-2H2]gibberellin A20-glucoside and [17,17-2H2]gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul., 3, 179-182.

    Article  Google Scholar 

  • Pilet, P. E., and Saugy M. (1985). Effects of applied and endogenous IAA on maize root growth. Planta, 4, 254-258.

    Article  Google Scholar 

  • Plazinski, J., Gartner, E., McIver, J., Jahnke, R., and Rolfe B.G. (1984). Effect of Azospirillum strains on Rhizobium-legume symbiosis. In C. Veeger and W. E. Newton (Eds.), Advances in nitrogen fixation research (. 424). The Hague, The Netherlands: Martinus Nijhoff/Dr. W. Junk/Pudoc.

    Google Scholar 

  • Plazinski, J., Innes, R.W., and Rolfe B.G. (1985). Expression of Rhizobium trifolii early nodulation genes on maize and rice plants. J. Bacteriol., 3, 812-815.

    Google Scholar 

  • Plazinski, J., and Rolfe B. G. (1985). Interaction of Azospirillum and Rhizobium strains leading to inhibition of nodulation. Appl. Environ. Microbiol., 9, 990-993.

    Google Scholar 

  • Probanza, A., Lucas, J. A., Acero, N., and Gutièrrez-Mañero, F. J. (1996). The influence of native bacteria on European alder (Alnus glutinosa [L.] Gaertn.) growth. I. Characterization of growth promoting and growth inhibiting bacterial strains. Plant Soil, 182, 59-66.

    Article  CAS  Google Scholar 

  • Reddy, G. B., Reddy, M. R., Reddy, K. R., and Chari A. K. (1977). Effect of Azotobacter inoculation and nitrogen application on yield of maize. Indian J. Agronomy, 2, 224-226.

    Google Scholar 

  • Reyes, V. G., and Schimidt E. L. (1979). Population densities of Rhizobium japonicum strain 123 estimated directly in soil and rhizosphere. Appl. Environ. Microbiol., 37, 854-858.

    PubMed  CAS  Google Scholar 

  • Reynders, L., and Vlassak K. (1982). Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant Soil, 66, 217-223.

    Article  Google Scholar 

  • Ridge, R. W., Rolfe, B. G., Jing, Y., and Cocking E. C. (1992). Rhizobium nodulation of non-legumes. Symbiosis, 4, 345-357.

    Google Scholar 

  • Rodelas, B., Gonzàlez-Lòpez, J., Martìnez-Toledo, M. V., Pozo, C., and Salmeròn, V. (1999). Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol. Fertil. Soils, 9, 165-169.

    Article  Google Scholar 

  • Rodelas, B., Gonzàlez-Lòpez, J., Salmeròn, V., Pozo, C., and Martìnez-Toledo, M. V. (1996). Enhancement of nodulation, N2-fixation and growth of faba bean (Vicia faba L.) by combined inoculation with Rhizobium leguminosarum bv. viciae and Azospirillum brasilense. Symbiosis, 1, 175-186.

    Google Scholar 

  • Sarig, S., Blum, A., and Okon Y. (1988). Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agri. Sci., 110, 271-277.

    Google Scholar 

  • Sarig, S., Kapulnik, Y., Nur, I., and Okon Y. (1984). Response of non-irrigated Sorghum bicolor to Azospirillum inoculation. Exp. Agric., 0, 59-66.

    Google Scholar 

  • Sarig, S., Kapulnik, Y., and Okon Y. (1986). Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil, 0, 335-342.

    Article  CAS  Google Scholar 

  • Sarig, S., Okon, Y., and Blum A. (1990). Promotion of leaf area development and yield in Sorghum bicolor inoculated with Azospirillum brasilense. Symbiosis, 9, 235-245.

    Google Scholar 

  • Sarig, S., Okon, Y., and Blum A. (1992). Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J. Plant Nutr., 5, 805-819.

    Google Scholar 

  • Scott, T. K. (1972). Auxins and roots. Annu. Rev. Plant Physiol., 3, 235-258.

    Article  Google Scholar 

  • Shimshick, E. J., and Hebert R. R. (1979). Binding characteristics of N2-fixing bacteria to cereal roots. Appl. Environ. Microbiol., 38, 447-453.

    PubMed  CAS  Google Scholar 

  • Singh, C. M., Sood, B. R., and Modgal S. C. (1977). Effect of Azotobacter, nitrogen and F.Y.M. on maize in Kulu Valley. Food Farm Agric, 8, 51.

    Google Scholar 

  • Singh, C. S., and Subba Rao, N. S. (1979). Associative effect of Azospirillum brasilense with Rhizobium japonicum on nodulation and yield of soybean (Glycine max). Plant Soil, 3, 387-392.

    Article  Google Scholar 

  • Smith, R. L., Schank, S. C., Milam, J. R., and Baltensperger A. A. (1984). Responses of Sorghum and Pennisetumspecies to the N2-fixing bacterium Azospirillum brasilense. Appl. Environ. Microbiol., 7, 1331-1336.

    Google Scholar 

  • Spanswick, R. M. (1981). Electrogenic ion pumps. Annu. Rev. Plant Physiol., 2, 267-289.

    Article  Google Scholar 

  • Sumner, M. E. (1990). Crop responses to Azospirillum inoculation. In B.A. Stewart (Ed.), .Advances in soil sciences (pp. 53-123). New York, NY: Springer-Verlag.

    Google Scholar 

  • Syono, K., Newcomb, W., and Torrey J. G. (1976). Cytokinin production in relation to the development of pea root nodules . Can. J. Bot., 4, 2155-2162.

    Article  Google Scholar 

  • Tien, T. M., Gaskins, M. H., and Hubbell D. H. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum). Appl. Environ. Microbiol., 7, 1016-1024.

    Google Scholar 

  • Terouchi, N., and Syõno, K. (1990). Rhizobium attachment and curling in asparagus, rice and oat plants. Plant Cell Physiol., 1, 119-127.

    Google Scholar 

  • Trinick, M. J. (1973). Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature, 4, 459-460.

    Article  Google Scholar 

  • Trinick, M. J., and Hadobas P. A. (1995). Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabidopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. or legumes grown in tropical soils. Plant Soil, 2, 207-219.

    Article  Google Scholar 

  • Umali-Garcia, M., Hubell, D. H., Gaskins, M. H., and Dazzo F. B. (1980). Association of Azospirillum with grass roots. Appl. Environ. Microbiol., 9, 219-226.

    Google Scholar 

  • Vedder-Weiss, D., Jurkevitch, E., Burdman, S., Weiss, D., and Okon Y. (1999). Root growth, respiration and β -glucosidase activity in maize (Zea mays) and common bean (Phaseolus vulgaris) inoculated with Azospirillum brasilense. Symbiosis, 6, 363-377.

    Google Scholar 

  • Volpin, H., Burdman, S., Castro-Sowinski, S., Kapulnik, Y., and Okon Y. (1996). Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots. Mol. Plant-Microbe Interact., 9, 388-394.

    CAS  Google Scholar 

  • Volpin, H., and Kapulnik Y. (1994). Interaction of Azospirillum with beneficial soil microorganisms. In Y. Okon (Ed.), Azospirillum /Plant Associations (pp 111-118). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Waisel, Y., Eshel, A., and Kafkafi U. (2002). Plant roots: The hidden half. New York, NY: Marcel Dekker Inc.

    Google Scholar 

  • Walsh, C., Pascal, R. A., Johnston, M., Raines, R., Dikshit, D., Krantz, A., and Honma, M. (1981). Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas sp. Biochemistry, 0, 7509-7519.

    Article  CAS  Google Scholar 

  • Walsh, U.F., Morissey, J.P., and O’Gara, F. (2001). Pseudomonas for biocontrol of phytopathogens: From functional genomics to commercial exploitation. Cur. Opin. Biotechnol., 2, 289-295.

    Article  Google Scholar 

  • Weller, D. M., and Thomashow L. S. (1994). Current challenges in introducing beneficial microorganisms into the rhizosphere. In F. O’Gara, D. N., Dowling, and B. Boesten, (Eds.), Molecular ecology of rhizosphere microorganisms. Biotechnology and the release of GMOs. (pp. 1-18). Weinheim, Germany: VCH Verlags Gesellschaft mbH.

    Google Scholar 

  • Werner, D. (1992). Symbiosis of plants and microbes. London, UK: Chapman and Hall.

    Google Scholar 

  • Yahalom, E., Kapulnik, Y., and Okon Y. (1984). Response of Setaria italica to inoculation with Azospirillum brasilense as compared to Azotobacter chroococcum. Plant Soil, 2, 77-85.

    Article  Google Scholar 

  • Yahalom, E., Okon, Y., and Dovrat A. (1987). Azospirillum effects on susceptibility to Rhizobium nodulation and on nitrogen fixation of several forage legumes. Can. J. Microbiol., 3, 510-514.

    Article  Google Scholar 

  • Yahalom, E., Okon, Y., and Dovrat A. (1988). Early nodulation in legumes inoculated with Azospirillum and Rhizobium. Symbiosis, 6, 69-79.

    Google Scholar 

  • Yahalom, E., Okon, Y., and Dovrat A. (1990). Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic (Medicago polymorpha). Can. J. Microbiol., 6, 10-14.

    Article  Google Scholar 

  • Yahalom, E., Okon, Y., Dovrat, A., and Czosnek H. (1991). Effect of inoculation with Azospirillum brasilense strain Cd and Rhizobium on the root morphology of burr medic (Medicago polymorpha). Israel J. Bot., 0, 155-164.

    Google Scholar 

  • Yang, S. F., and Hoffman N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 5, 155-189.

    Article  Google Scholar 

  • Yanni, Y. G., Rizk, R. Y., Abd El-Fattah, F. K., Squartini, A., Corich, V., Giacomini, A., et al. (2001). The beneficial plant growth-promoting association of Rhizobium leguminosarumbv. trifolii with rice roots. Aust. J. Plant Physiol., 28, 845–870.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Dobbelaere, S., Okon, Y. (2007). The Plant Growth-Promoting Effect and Plant Responses. In: Elmerich, C., Newton, W.E. (eds) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3546-2_7

Download citation

Publish with us

Policies and ethics