Skip to main content
Book cover

Origins pp 299–313Cite as

Potential Role of Dissimilatory Iron Reduction in the Early Evolution of Microbial Respiration

  • Chapter

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 6))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Afshar, S., Kim, C, Monbouquette, H. G. and Schroder, I. (1998). Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum. Appl. Environ. Microbiol. 64, 3004–3008.

    CAS  Google Scholar 

  • Anbar, A., Roe, J., Barling, J. and Nealson, K. H. (2000). Nonbiological fractionation of iron isotopes. Science. 288, 126–128.

    Article  CAS  Google Scholar 

  • Anderson, R. T., Chapelle, F. H. and Lovley, D. R. (1998). Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science. 281, 976–977.

    Article  CAS  Google Scholar 

  • Anderson, R. T. and Lovley, D. R. (1997). Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microbial Ecol. 15, 289–350.

    CAS  Google Scholar 

  • Anderson, R. T., Rooney-Varga, J., Gaw, C. V. and Lovley, D. R. (1998). Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32, 1222–1229.

    Article  CAS  Google Scholar 

  • Balashova, V. V. and Zavarzin, G. A. (1980). Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology. 48, 635–639.

    Google Scholar 

  • Baross, J. A. and Hoffman, S. E. (1985). Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life. 15, 327–345.

    Article  CAS  Google Scholar 

  • Baur, M. E., Hayes, J. M., Studley, S. A. and Walter, M. R. (1985). Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Econ. Geol. 80, 270–282.

    CAS  Google Scholar 

  • Beard, B. L., Johnson, C. M., Cox, L., Sun, H., Nealson, K. H. and Aguilar, C. (1999). Iron isotope biosignatures. Science 285, 1889–1892.

    Article  CAS  Google Scholar 

  • Bock, G. R. and Goode, J. A. (1996). Evolution of hydrothermal ecosystems on Earth (and Mars?). West Sussex, England, John Wiley & Sons Ltd.

    Google Scholar 

  • Bond, D. R., Holmes, D. E., Tender, L. M. and Lovley, D. R. (2002). Electrode-reducing microorganisms harvesting energy from marine sediments. Science 295, 483–485.

    Article  CAS  Google Scholar 

  • Bond, D. R. and Lovley, D. R. (2002). Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ. Microbiol. 4, 115–124.

    Article  CAS  Google Scholar 

  • Bond, D. R. and Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555.

    Article  CAS  Google Scholar 

  • Brock, T. D., S., C, Petersen, S. and Mosser, J. L. (1976). Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim. Cosmochim. Acta 40, 493–500.

    Article  CAS  Google Scholar 

  • Brookins, D. G. (1990). Radionuclide behavior at the Oklo nuclear reactor, Gabon. Waste Manage. 10, 285–296.

    Article  CAS  Google Scholar 

  • Cairns-Smith, A. G., Hall, A. J. and Russell, M. J. (1992). Mineral theories of the origin of life and an iron sulfide example. Orig. Life Evol. Biosphere. 22, 161–180.

    Article  CAS  Google Scholar 

  • Cameron, E. M. (1982). Sulphate and sulphate reduction in early Precambrian oceans. Nature 296, 145–148.

    Article  CAS  Google Scholar 

  • Chapelle, F. H., O’Neill, K., Bradley, P. M., Methé, B. A., Ciufo, S. A., Knobel, L. L. and Lovley, D. R (2002). A hydrogen-based subsurface community dominated by methanogens. Nature 415, 312–316.

    Article  Google Scholar 

  • Childers, S. and Lovley, D. R. (2001). Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria. FEMS Microbiol. Lett. 195, 253–258.

    CAS  Google Scholar 

  • de Duve, C. (1995). Vital Dust. New York, Basic Books.

    Google Scholar 

  • Ehrenreich, A. and Widdel, F. (1994). Anaerobic oxidation of ferrous iron by purple bacteria, new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526.

    CAS  Google Scholar 

  • Eastoe, C. J., Gustin, M. S., Hurlbut, D. F. and Orr, R. L. (1990). Sulfur isotopes in early Proterozoic volcanogenic massive sulfide deposits: new data from Arizona and implications for ocean chemistry. Precambrian Res. 46, 353–364.

    Article  CAS  Google Scholar 

  • Finneran, K., Anderson, R. T., Nevin, K. P. and Lovley, D. R. (2002). Bioremediation of uraniumcontaminated aquifers with microbial U(VI) reduction. Soil and Sediment Contamination. 11, 339–357.

    Article  CAS  Google Scholar 

  • Gold, T. (1992). The deep, hot biosphere. Proc. Natl. Acad. Sci. USA. 89, 6045–6049.

    CAS  Google Scholar 

  • Greene, A. C, Patel, B. K. C. and Sheehy, A. J. (1997). Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int.. J. Syst. Bacteriol. 47, 505–509.

    Article  CAS  Google Scholar 

  • Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Robnagel, P., Burggraf, S., Huber, H. and Stetter, K. O. (1996). Ferroglobus placidus gen nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe+2 at neutral pH under anoxic conditions. Arch. Microbiol. 166, 308–314.

    Article  CAS  Google Scholar 

  • Hartman, H. (1984). The evolution of photosynthesis and microbial mats: a speculation on the banded iron formations. In: Y. Cohen, R.W. Castenholz, and H.O. Halverson (eds.) Microbial Mats: Stromatolites. New York, Alan R. Liss, Inc.: 449–453.

    Google Scholar 

  • Holm, N. G. (1992). Why are hydrothermal systems proposed as plausible environments for the origin of life? Origins Life Evol. Biosphere. 22, 5–14.

    Article  Google Scholar 

  • Holmes, D. E., Finneran, K. T. and Lovley, D. R. (2002). Enrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68, 2300–2306.

    Article  CAS  Google Scholar 

  • Hostetler, P. B. and Garrels, R. M. (1962). Transportation and precipitation of uranium and vanadium at low temperatures with special reference to sandstone-type uranium. Econ. Geol. 57, 137–167.

    Article  CAS  Google Scholar 

  • Huber, H., Jannasch, H., Rachel, R., Fuchs, T. and Stetter, K. O. (1997). Archaeoglobus veneficus sp. nov., a novel facultative chemolithotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. System. Appl. Microbiol. 20, 374–380.

    CAS  Google Scholar 

  • Hugenholtz, P., Pitulle, C, Hershberger, K. L. and Pace, N. R. (1998). Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376.

    CAS  Google Scholar 

  • Jannasch, H. W. (1995). Microbial interactions with hydrothermal fluids. Seafloor Hyrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91. 273–296.

    Google Scholar 

  • Karl, D. M. (1995). Ecology of free-living hydrothermal vent microbial communities. The Microbiology of Deep-Sea Hydrothermal Vents. D. M. Karl. New York, CRC Press: 35–124.

    Google Scholar 

  • Kashefi, K., Holmes, D. E., Reysenbach, A.-L. and Lovley, D. R. (2002a). Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacteriumferrireducens, gen., nov., sp. nov. Appl. Environ. Microbiol. 68, 1735–1742.

    Article  CAS  Google Scholar 

  • Kashefi, K. and Lovley, D. R. (2000). Reduction of Fe(III), Mn(IV), and toxic metals at 100 †C by Pyrobaculum islandicum. Appl. Environ. Microbiol. 66, 1050–1056.

    Article  CAS  Google Scholar 

  • Kashefi, K. and Lovley, D. R. (2003). Extending the upper temperature limit for life. Science (submitted).

    Google Scholar 

  • Kashefi, K., Tor, J., Nevin, K. P. and Lovley, D. R. (2001). Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl. Environ. Microbiol. 67, 3275–3279.

    Article  CAS  Google Scholar 

  • Kashefi, K., Tor, J. M., Holmes, D. E., VanPraagh, C. V. G., Reysenbach, A.-L. and Lovley, D. R. (2002b). Geoglobus ahangari, gen. nov., sp. nov., a novel hyperthermophilic Archaeum capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int. J. Syst. Evol. Microbiol. 52, 719–728.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1987). Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiol. J. 5, 375–399.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1990). Magnetite formation during microbial dissimilatory iron reduction. Iron Biominerals. R. B. Frankel and R. P. Blakemore. New York, Plenum Press: 151–166.

    Google Scholar 

  • Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259–287.

    CAS  Google Scholar 

  • Lovley, D. R. (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Industr. Microbiol. 14, 85–93.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2000). Fe(III) and Mn(IV) Reduction. Environmental Microbe-Metal Interactions. D. R. Lovley. Washington, D.C., ASM Press: 3–30.

    Google Scholar 

  • Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P. and Siegel, D. I. (1989). Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–299.

    Article  CAS  Google Scholar 

  • Lovley, D. R. and Chapelle, F. H. (1995). Deep subsurface microbial processes. Rev. Geophsy. 33, 365–381.

    Article  Google Scholar 

  • Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. and Woodward, J. C. (1996). Humic substances as electron acceptors for microbial respiration. Nature. 382, 445–448.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Fraga, J. L., Blunt-Harris, E. L., Hayes, L. A., Phillips, E. J. P. and Coates, J. D. (1998). Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26, 152–157.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Kashefi, K., Vargas, M., Tor, J. M. and Blunt-Harris, E. L. (2000). Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem. Geol. 169, 289–298.

    Article  CAS  Google Scholar 

  • Lovley, D. R. and Lonergan, D. J. (1990). Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56, 1858–1864.

    CAS  Google Scholar 

  • Lovley, D. R, Phillips, E. J. P., Gorby, Y. A. and Landa, E. R. (1991). Microbial reduction of uranium. Nature. 350, 413–416.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, G. L. and Phillips, E. J. P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330, 252–254.

    Article  CAS  Google Scholar 

  • Lovley, D. R, Woodward, J. C. and Chapelle, F. H. (1994). Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature. 370, 128–131.

    Article  CAS  Google Scholar 

  • McKay, D. S., Gibson Jr., E. K., Thomas-Deprta, K. L., Vali, H., Romanek, C. S., Clement, S. J., Chillier, X. D. F., Maechling, C. R. and Zare, R N. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science. 273, 924–930.

    CAS  Google Scholar 

  • Nakashima, S., Disnar, J. R., Perruchot, A. and Trichet, J. (1984). Experimental study of mechanisms of fixation and reduction of uranium by sedimentary organic matter under diagenetic or hydrothermal conditions. Geochim. Cosmochim. Acta. 48, 2321–2329.

    Article  CAS  Google Scholar 

  • Pace, N. R. (1991). Origin of life-facing up to the physical setting. Cell. 65, 531–533.

    Article  CAS  Google Scholar 

  • Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D. and Lovley, D. R. (1999). Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65, 3056–3063.

    CAS  Google Scholar 

  • Russell, M. J., Daia, D. E. and Hall, A. J. (1998). The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. Thermophiles: The Keys to Molecular Evolution and the Origin of Life? J. Wiegel and M. W. W. Adams. Philadelphia, PA, Taylor & Francis Ltd.: 77–126.

    Google Scholar 

  • Russell, M. J. and Hall, A. J. (2002). Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. Geochem. News 113, 6–12.

    Google Scholar 

  • Slobodkin, A., Jeanthon, C, L’Haridon, S., Nazina, T. and Miroshnichenko, M. (1999a). Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs in Western Siberia. Curr. Microbiol. 39, 99–102.

    Article  CAS  Google Scholar 

  • Slobodkin, A. I., Zavarzina, D. G., Sokolova, T. G. and Bonch-Osmolovskaya, E. A. (1999b). Dissimilatory reduction of inorganic electron acceptors by thermophilic anaerobic prokaryotes. Microbiology. 68, 600–622.

    Google Scholar 

  • Snoeyenbos-West, O. L., Nevin, K. P. and Lovley, D. R. (2000). Stimulation of dissimilatory Fe(III) reduction results in a predominance of Geobacter species in a variety of sandy aquifers. Microbial Ecol. 39, 153–167.

    Article  CAS  Google Scholar 

  • Stetter, K. O. (1996). Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18, 149–158.

    CAS  Google Scholar 

  • Tor, J. M., Amend, J. P. and Lovley, D. R. (2003). Metabolism of organic compounds in anaerobic, hydrothermal sulfate-reducing sediments. Environ. Microbiol. (in press).

    Google Scholar 

  • Tor, J. M., Kashefi, K. and Lovley, D. R. (2001). Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl. Environ. Microbiol. 67, 1363–1365.

    Article  CAS  Google Scholar 

  • Tor, J. M. and Lovley, D. R. (2001). Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobusplacidus. Environ. Microbiol. 3, 281–287.

    Article  CAS  Google Scholar 

  • Vargas, M., Kashefi, K., Blunt-Harris, E. L. and Lovley, D. R (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature. 395, 65–67.

    Article  CAS  Google Scholar 

  • Volkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A. and Stetter, K. O. (1993). Pyrobaculum aerophilum sp. nov, a novel nitrate-reducing hyperthermophilic Archaeum. Appl. Environ. Microbiol. 59, 2918–2926

    CAS  Google Scholar 

  • Walker, J. C. G. (1987). Was the Archaean biosphere upside down? Nature. 329, 710–712.

    Article  CAS  Google Scholar 

  • Walker, J. C. G. and Brimblecombe, P. (1985). Iron and sulfur in the pre-biologic ocean. Precambrian Research 28, 205–222.

    Article  CAS  Google Scholar 

  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B. (1993). Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature. 362, 834–835.

    Article  CAS  Google Scholar 

  • Woese, C. (1998). The universal ancestor. Proc. Natl. Acad. Sci. USA. 95, 6854–6859.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lovley, D.R. (2004). Potential Role of Dissimilatory Iron Reduction in the Early Evolution of Microbial Respiration. In: Seckbach, J. (eds) Origins. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2522-X_19

Download citation

Publish with us

Policies and ethics