Skip to main content

Term and Preterm Parturition

  • Chapter
Book cover Immunology of Pregnancy

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Parturition is the act of giving birth.1 It is a complex process that includes the anatomical, physiological, biochemical and immunological events taking place in the mother, placenta and fetus. These events are responsible for: (1) the preparation of the uterus for labor; (2) labor per se, leading to the delivery of the fetus and placenta; and (3) post-partum uterine involution, breast feeding and adaptation of maternal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster’s Ninth New Collegiate Dictionary. Springfield, MA: Merriam-Webster Inc. Publishers, 1990:859.

    Google Scholar 

  2. Yudkin PL, Wood L, Redman CWG. Risk of unexplained stillbirth at different gestational ages. Lancet 1987; 1:1192–94.

    PubMed  CAS  Google Scholar 

  3. Tucker J, McGuire W. ABC of preterm birth-Epidemiology of preterm birth. Br Med J 2004; 329:675–78.

    Article  Google Scholar 

  4. Porreco RP, Thorp JA. The cesarean birth epidemic: Trends, causes, and solutions. Am J Obstet Gynecol 1996; 175:369–74.

    Article  PubMed  CAS  Google Scholar 

  5. Mabie WC, Barton JR, Sibai BM. Septic shock in pregnancy. Obstetrics and Gynecology 1997; 90:553–61.

    Article  PubMed  CAS  Google Scholar 

  6. Chang J, Elam-Evans LD, Berg CJ et al. Pregnancy-related mortality surveillance—United States, 1991–1999. MMWR Surveill Summ 2003; 52:1–8.

    PubMed  Google Scholar 

  7. Kloosterman GJ. Prolonged pregnancy. Gynaecologia 1956; 142:372–88.

    PubMed  CAS  Google Scholar 

  8. Jenkin G, Young IR. Mechanisms responsible for parturition; the use of experimental models. Anim Reprod Sci 2004; 82–83:567–81.

    Article  PubMed  CAS  Google Scholar 

  9. Allen WR, Wilsher S, Turnbull C et al. Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero. Reproduction 2002; 123:445–53.

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham FG, Gant NF, Leveno KJ et al. Parturition. In: Cunningham FG, Gant NF, Leveno KJ et al, eds. Williams Obstetrics. New York: McGraw-Hill, 2001:251–90.

    Google Scholar 

  11. Duff P. Pyelonephritis in pregnancy. Clin Obstet Gynecol 1984; 27:17–31.

    Article  PubMed  CAS  Google Scholar 

  12. Millar LK, DeBuque L, Wing DA. Uterine contraction frequency during treatment of pyelonephritis in pregnancy and subsequent risk of preterm birth. J Perinat Med 2003; 31:41–46.

    Article  PubMed  Google Scholar 

  13. Chwalisz K, Fahrenholz F, Hackenberg M et al. The progesterone antagonist onapristone increases the effectiveness of oxytocin to produce delivery without changing the myometrial oxytocin receptor concentrations. Am J Obstet Gynecol 1991; 165:1760–70.

    PubMed  CAS  Google Scholar 

  14. Haluska GJ, Stanczyk FZ, Cook MJ et al. Temporal changes in uterine activity and prostaglandin response to RU486 in rhesus macaques in late gestation. Am J Obstet Gynecol 1987; 157:1487–95.

    PubMed  CAS  Google Scholar 

  15. da Fonseca EB, Bittar RE, Carvalho MH et al. Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: A randomized placebo-controlled double-blind study. Am J Obstet Gynecol 2003; 188:419–24.

    Article  PubMed  CAS  Google Scholar 

  16. Keirse MJ. Progestogen administration in pregnancy may prevent preterm delivery. Br J Obstet Gynaecol 1990; 97:149–54.

    PubMed  CAS  Google Scholar 

  17. Meis PJ, Klebanoff M, Thorn E et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. N Engl J Med 2003; 348:2379–85.

    Article  PubMed  CAS  Google Scholar 

  18. Challis JRG, Lye SJ. Parturition. In: Clarke JR, ed. Oxford Reviews of Reproductive Biology, vol. 8. Oxford: Oxford University Press, 1986; 61–129.

    Google Scholar 

  19. Challis JRG, Gibb W. Control of parturition. Prenat Neonat Med 1996; 1:283–291.

    Google Scholar 

  20. McLean M, Bisits A, Davies J et al. A placental clock controlling the length of human pregnancy. Nat Med 1995; 1:460–63.

    Article  PubMed  CAS  Google Scholar 

  21. Ohrlander S, Gennser G, Eneroth P. Plasma cortisol levels in human fetus during parturition. Obstet Gynecol 1976; 48:381–87.

    PubMed  CAS  Google Scholar 

  22. Challis JR. CRH, a placental clock and preterm labour. Nat Med 1995; 1:416.

    Article  PubMed  CAS  Google Scholar 

  23. Genazzani AR, Petraglia F, Facchinetti F et al. Lack of beta-endorphin plasma level rise in oxytocin-induced labor. Gynecol Obstet Invest 1985; 19:130–34.

    PubMed  CAS  Google Scholar 

  24. Korebrits C, Ramirez MM, Watson L et al. Maternal corticotropin-releasing hormone is increased with impending preterm birth. J Clin Endocrinol Metab 1998; 83:1585–91.

    Article  PubMed  CAS  Google Scholar 

  25. Petraglia F, Giardino L, Coukos G et al. Corticotropin-releasing factor and parturition: Plasma and amniotic fluid levels and placental binding sites. Obstet Gynecol 1990; 75:784–89.

    PubMed  CAS  Google Scholar 

  26. Randall NJ, Bond K, Macaulay J et al. Measuring fetal and maternal temperature differentials: A probe for clinical use during labour. J Biomed Eng 1991; 13:481–85.

    Article  PubMed  CAS  Google Scholar 

  27. Smith R. Alterations in the hypothalamic pituitary adrenal axis during pregnancy and the placental clock that determines the length of parturition. J Reprod Immunol 1998; 39:215–20.

    Article  PubMed  CAS  Google Scholar 

  28. Leung TN, Chung TK, Madsen G et al. Rate of rise in maternal plasma corticotrophin-releasing hormone and its relation to gestational length. BJOG 2001; 108:527–32.

    Article  PubMed  CAS  Google Scholar 

  29. Florio P, Cobellis L, Woodman J et al. Levels of maternal plasma corticotropin-releasing factor and urocortin during labor. J Soc Gynecol Investig 2002; 9:233–37.

    Article  PubMed  CAS  Google Scholar 

  30. Nathanielsz P, Honnebier M. Myometrial function. In: Drife J, Calder A, eds. Prostaglandins and the Uterus. London: Springer-Verlag, 1992:161.

    Google Scholar 

  31. Hsu HW, Figueroa JP, Honnebier MB et al. Power spectrum analysis of myometrial electromyo-gram and intrauterine pressure changes in the pregnant rhesus monkey in late gestation. Am J Obstet Gynecol 1989; 161:467–73.

    PubMed  CAS  Google Scholar 

  32. Taylor NF, Martin MC, Nathanielsz PW et al. The fetus determines circadian oscillation of myometrial electromyographic activity in the pregnant rhesus monkey. Am J Obstet Gynecol 1983; 146:557–67.

    PubMed  CAS  Google Scholar 

  33. Binienda Z, Rosen ED, Kelleman A et al. Maintaining fetal normoglycemia prevents the increase in myometrial activity and uterine 13,14-dihydro-15-keto-prostaglandin F2 alpha production during food withdrawal in late pregnancy in the ewe. Endocrinology 1990; 127:3047–51.

    PubMed  CAS  Google Scholar 

  34. Nathanielsz P, Poore E, Brodie A et al. Update on molecular events of myometrial activity during pregnancy. In: Nathanielsz P, Parer J, eds. Research in Perinatal Medicine. Ithaca, NY: Perinatology, 1987:111.

    Google Scholar 

  35. Romero R, Avila C, Sepulveda W et al. The role of systemic and intrauterine infection in preterm labor. In: Fuchs A, Fuchs F, Stubblefield P, eds. Preterm Birth: Causes, Prevention, and Management. New York: McGraw-Hill, 1993.

    Google Scholar 

  36. Fowden AL, Harding R, Ralph MM et al. The nutritional regulation of plasma prostaglandin E concentrations in the fetus and pregnant ewe during late gestation. J Physiol 1987; 394:1–12.

    PubMed  CAS  Google Scholar 

  37. Kaplan M, Eidelman Al, Aboulafia Y. Fasting and the precipitation of labor. The Yom Kippur effect. JAMA 1983; 250:1317–18.

    Article  PubMed  CAS  Google Scholar 

  38. Maymon E, Mazor M, Romero R et al. The Yom Kippur effect on human parturition. Am J Obstet Gynecol 1997; 176:S115.

    Article  Google Scholar 

  39. Honnebier MB, Jenkins SL, Wentworth RA et al. Temporal structuring of delivery in the absence of a photoperiod: Preparturient myometrial activity of the rhesus monkey is related to maternal body temperature and depends on the maternal circadian system. Biol Reprod 1991; 45:617–25.

    Article  PubMed  CAS  Google Scholar 

  40. Katz M, Newman RB, Gill PJ. Assessment of uterine activity in ambulatory patients at high risk of preterm labor and delivery. Am J Obstet Gynecol 1986; 154:44–47.

    PubMed  CAS  Google Scholar 

  41. Honnebier MB, Figueroa JP, Rivier J et al. Studies on the role of oxytocin in late pregnancy in the pregnant rhesus monkey: Plasma concentrations of oxytocin in the maternal circulation throughout the 24-h day and the effect of the synthetic oxytocin antagonist [1-beta-Mpa(beta-(CH2)5)1, (Me(Tyr2, Orn8] oxytocin on spontaneous nocturnal myometrial contractions. J Dev Physiol 1989; 12:225–32.

    PubMed  CAS  Google Scholar 

  42. Owiny JR, Mitchell M, Nathanielsz PW. Effect of 48-hour infusion of the synthetic oxytocin antagonist, [1-beta-mercapto(beta-(CH2)5)1(OMe)Tyr2,Orn8]-oxytocin, on myometrial activity of pregnant sheep at 139–140 days of gestation. Biol Reprod 1992; 47:436–40.

    Article  PubMed  CAS  Google Scholar 

  43. Wilson Jr L, Parsons MT, Flouret G. Inhibition of spontaneous uterine contractions during the last trimester in pregnant baboons by an oxytocin antagonist. Am J Obstet Gynecol 1990; 163:1875–82.

    PubMed  CAS  Google Scholar 

  44. Blanks AM, Vatish M, Allen MJ et al. Paracrine oxytocin and estradiol demonstrate a spatial increase in human intrauterine tissues with labor. J Clin Endocrinol Metab 2003; 88:3392–400.

    Article  PubMed  CAS  Google Scholar 

  45. Blanks AM, Thornton S. The role of oxytocin in parturition. BJOG 2003; 110(Suppl 20):46–51.

    PubMed  CAS  Google Scholar 

  46. Chibbar R, Wong S, Miller FD et al. Estrogen stimulates oxytocin gene expression in human chorio-decidua. J Clin Endocrinol Metab 1995; 80:567–72.

    Article  PubMed  CAS  Google Scholar 

  47. Mauri A, Argiolas A, Ticconi C et al. Oxytocin in human intrauterine tissues at parturition. Reprod Fertil Dev 1995; 7:1481–84.

    Article  PubMed  CAS  Google Scholar 

  48. Mitchell BF. Oxytocin synthesis and metabolism in human decidua. Reprod Fertil Dev 1995; 7:319–21.

    Article  PubMed  CAS  Google Scholar 

  49. Mitchell BF, Chibbar R. Synthesis and metabolism of oxytocin in late gestation in human decidua. Adv Exp Med Biol 1995; 395:365–80.

    PubMed  CAS  Google Scholar 

  50. Mitchell BF, Wong S. Metabolism of oxytocin in human decidua, chorion, and placenta. J Clin Endocrinol Metab 1995; 80:2729–33.

    Article  PubMed  CAS  Google Scholar 

  51. Romero R, Sibai BM, Sanchez-Ramos L et al. An oxytocin receptor antagonist (atosiban) in the treatment of preterm labor: A randomized, double-blind, placebo-controlled trial with tocolytic rescue. Am J Obstet Gynecol 2000; 182:1173–83.

    Article  PubMed  CAS  Google Scholar 

  52. Moutquin JM, Sherman D, Cohen H et al. Double-blind, randomized, controlled trial of atosiban and ritodrine in the treatment of preterm labor: A multicenter effectiveness and safety study. Am J Obstet Gynecol 2000; 182:1191–99.

    Article  PubMed  CAS  Google Scholar 

  53. The Worldwide Atosiban versus Beta-agonists Study Group. Effectiveness and safety of the oxytocin antagonist atosiban versus beta-adrenergic agonists in the treatment of preterm labour. BJOG 2001; 108:133–42.

    Google Scholar 

  54. Coomarasamy A, Knox EM, Gee H et al. Oxytocin antagonists for tocolysis in preterm labour — a systematic review. Med Sci Monit 2002; 8:RA268–RA273.

    PubMed  CAS  Google Scholar 

  55. Miller FD, Chibbar R, Mitchell BF. Synthesis of oxytocin in amnion, chorion and decidua: A potential paracrine role for oxytocin in the onset of human parturition. Regul Pept 1993; 45:247–51.

    Article  PubMed  CAS  Google Scholar 

  56. Chibbar R, Miller FD, Mitchell BF. Synthesis of oxytocin in amnion, chorion, and decidua may influence the timing of human parturition. J Clin Invest 1993; 91:185–92.

    PubMed  CAS  Google Scholar 

  57. European Atosiban Study Group. The oxytocin antagonist atosiban versus the beta-agonist terbutaline in the treatment of preterm labor. A randomized, double-blind, controlled study. Acta Obstet Gynecol Scand 2001; 80:413–22.

    Google Scholar 

  58. French/Australian Atosiban Investigators Group. Treatment of preterm labor with the oxytocin antagonist atosiban: A double-blind, randomized, controlled comparison with salbutamol. Eur J Obstet Gynecol Reprod Biol 2001; 98:177–85.

    Article  Google Scholar 

  59. Garfield RE, Hayashi RH. Appearance of gap junctions in the myometrium of women during labor. Am J Obstet Gynecol 1981; 140:254–60.

    PubMed  CAS  Google Scholar 

  60. Garfield RE, Puri CP, Csapo AI. Endocrine, structural, and functional changes in the uterus during premature labor. Am J Obstet Gynecol 1982; 142:21–27.

    PubMed  CAS  Google Scholar 

  61. Cole WC, Garfield RE, Kirkaldy JS. Gap junctions and direct intercellular communication between rat uterine smooth muscle cells. Am J Physiol 1985; 249:C20–C31.

    PubMed  CAS  Google Scholar 

  62. Garfield RE, Sims S, Daniel EE. Gap junctions: Their presence and necessity in myometrium during parturition. Science 1977; 198:958–60.

    Article  PubMed  CAS  Google Scholar 

  63. Garfield RE, Sims SM, Kannan MS et al. Possible role of gap junctions in activation of myometrium during parturition. Am J Physiol 1978; 235:C168–C179.

    PubMed  CAS  Google Scholar 

  64. Orsino A, Taylor CV, Lye SJ. Connexin-26 and connexin-43 are differentially expressed and regulated in the rat myometrium throughout late pregnancy and with the onset of labor. Endocrinology 1996; 137:1545–53.

    Article  PubMed  CAS  Google Scholar 

  65. Ou CW, Orsino A, Lye SJ. Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology 1997; 138:5398–407.

    Article  PubMed  CAS  Google Scholar 

  66. Chow L, Lye SJ. Expression of the gap junction protein connexin-43 is increased in the human myometrium toward term and with the onset of labor. Am J Obstet Gynecol 1994; 170:788–95.

    PubMed  CAS  Google Scholar 

  67. Balducci J, Risek B, Gilula NB et al. Gap junction formation in human myometrium: A key to preterm labor? Am J Obstet Gynecol 1993; 168:1609–15.

    PubMed  CAS  Google Scholar 

  68. Lefebvre DL, Piersanti M, Bai XH et al. Myometrial transcriptional regulation of the gap junction gene, connexin-43. Reprod Fertil Dev 1995; 7:603–11.

    Article  PubMed  CAS  Google Scholar 

  69. Petrocelli T, Lye SJ. Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone. Endocrinology 1993; 133:284–90.

    Article  PubMed  CAS  Google Scholar 

  70. Lye SJ, Nicholson BJ, Mascarenhas M et al. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology 1993; 132:2380–86.

    Article  PubMed  CAS  Google Scholar 

  71. Cook JL, Zaragoza DB, Sung DH et al. Expression of myometrial activation and stimulation genes in a mouse model of preterm labor: Myometrial activation, stimulation, and preterm labor. Endocrinology 2000; 141:1718–28.

    Article  PubMed  CAS  Google Scholar 

  72. Lye SJ. The initiation and inhibition of labour: Towards a molecular understanding. Semin Reprod Endocrinol 1994; 12:284–94.

    Google Scholar 

  73. Lye SJ, Mitchell J, Nashman N et al. Role of mechanical signals in the onset of term and preterm labor. Front Horm Res 2001; 27:165–78.

    PubMed  CAS  Google Scholar 

  74. Lye S, Tsui P, Dorogin A et al. Myometrial programmning: A new concept underlying the mainteinance of pregnancy and the initiation of labor in VIIth International Conference on the Extracelullar Matrix of the Female Reproductive Tract and Simpson Symposia. University of Edinburgh: Centre for Reproductive Biology 2004.

    Google Scholar 

  75. Wen SW, Smith G, Yang Q et al. Epidemiology of preterm birth and neonatal outcome. Semin Fetal Neonat Med 2004; 9:429–35.

    Article  Google Scholar 

  76. Bryant-Greenwood GD, Millar LK. Human fetal membranes: Their preterm premature rupture. Biology of Reproduction 2000; 63:1575–79.

    Article  PubMed  CAS  Google Scholar 

  77. Schwahn H, Dubrausky V. The structure of the musculature of the human uterus-muscles and connective tissue. Am J Obstet Gynecol 1966; 94:391.

    Google Scholar 

  78. Danforth D, Evanston I. The distribution and functional activity of the cervical musculature. Am J Obstet Gynecol 1954; 68:1261.

    PubMed  CAS  Google Scholar 

  79. Uldbjerg N, Ekman G, Malmstrom A. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans and collagenolytic activity. Am J Obstet Gynecol 1982; 147:662.

    Google Scholar 

  80. Uldbjerg N, Forman A, Peterson L et al. Biomechanical and biochemical changes of the uterus and cervix during pregnancy. In: Reece E, Hobbins J, Mahoney M et al, eds. Medicine of the Fetus and Mother. Philadelphia: JB Lippincott, 1992:849.

    Google Scholar 

  81. Liggins G. Cervical ripening as an inflammatory reaction. In: Ellwood D, Anderson A, eds. The Cervix in Pregnancy and Labour: Clinical and Biochemical Investigations. Edinburgh: Churchill Livingstone, 1981.

    Google Scholar 

  82. Ito A, Hiro D, Ojima Y et al. Spontaneous production of interleukin-1-like factors from pregnant rabbit uterine cervix. Am J Obstet Gynecol 1988; 159:261–65.

    PubMed  CAS  Google Scholar 

  83. Ito A, Hiro D, Sakyo K et al. The role of leukocyte factors on uterine cervical ripening and dilation. Biol Reprod 1987; 37:511–17.

    Article  PubMed  CAS  Google Scholar 

  84. Ito A, Leppert PC, Mori Y. Human recombinant interleukin-1 alpha increases elastase-like enzyme in human uterine cervical fibroblasts. Gynecol Obstet Invest 1990; 30:239–41.

    PubMed  CAS  Google Scholar 

  85. Osmers RG, Blaser J, Kuhn W et al. Interleukin-8 synthesis and the onset of labor. Obstet Gynecol 1995; 86:223–29.

    Article  PubMed  CAS  Google Scholar 

  86. Maradny EE, Kanayama N, Halim A et al. Stretching of fetal membranes increases the concentration of interleukin-8 and collagenase activity. Am J Obstet Gynecol 1996; 174:843–49.

    Article  PubMed  CAS  Google Scholar 

  87. Pinto R, Rabow W, Votta R. Uterine cervix ripening in term pregnancy due to the action of estradiol-17 beta. Am J Obstet Gynecol 1965; 92:319.

    PubMed  CAS  Google Scholar 

  88. Rajabi MR, Dodge GR, Solomon S et al. Immunochemical and immunohistochemical evidence of estrogen-mediated collagenolysis as a mechanism of cervical dilatation in the guinea pig at parturition. Endocrinology 1991; 128:371–78.

    PubMed  CAS  Google Scholar 

  89. Chwalisz K, Shi Shao O, Neff G et al. The effect of antigestagen ZK 98, 199 on the uterine cervix. Acta Endocrinol 1987; 283:113.

    Google Scholar 

  90. Ito A, Imada K, Sato T et al. Suppression of interleukin 8 production by progesterone in rabbit uterine cervix. Biochem J 1994; 301 (Pt 1):183–86.

    PubMed  CAS  Google Scholar 

  91. Norman JE, Thomson AJ, Osmers RG et al. Cervical physiology. In: Critchley H, Bennett H, Thornton S, eds. Preterm Birth. London: RCOG Press, 2004:99–114.

    Google Scholar 

  92. Chwalisz K, Garfield RE. Role of nitric oxide in the uterus and cervix: Implications for the management of labor. J Perinat Med 1998; 26:448–57.

    PubMed  CAS  Google Scholar 

  93. Chwalisz K, Buhimschi I, Garfield RE. The role of nitric oxide in obstetrics. Prenat Neonat Med 1996; 4:292–328.

    Google Scholar 

  94. Evans CH, Stefanovic-Racic M, Lancaster J. Nitric oxide and its role in orthopaedic disease. Clin Orthop 1995; 275–94.

    Google Scholar 

  95. Romero R. Clinical application of nitric oxide donors and blockers. Hum Reprod 1998; 13:248–50.

    PubMed  CAS  Google Scholar 

  96. Buhimschi I, Ali M, Jain V et al. Differential regulation of nitric oxide in the rat uterus and cervix during pregnancy and labour. Hum Reprod 1996; 11:1755–66.

    PubMed  CAS  Google Scholar 

  97. Facchinetti F, Piccinini F, Volpe A. Chemical ripening of the cervix with intracervical application of sodium nitroprusside: A randomized controlled trial. Hum Reprod 2000; 15:2224–27.

    Article  PubMed  CAS  Google Scholar 

  98. Thomson AJ, Lunan CB, Cameron AD et al. Nitric oxide donors induce ripening of the human uterine cervix: A randomised controlled trial. Br J Obstet Gynaecol 1997; 104:1054–57.

    PubMed  CAS  Google Scholar 

  99. Tschugguel W, Schneeberger C, Lass H et al. Human cervical ripening is associated with an increase in cervical inducible nitric oxide synthase expression. Biol Reprod 1999; 60:1367–72.

    Article  PubMed  CAS  Google Scholar 

  100. Ekerhovd E, Weijdegard B, Brannstrom M et al. Nitric oxide induced cervical ripening in the human: Involvement of cyclic guanosine monophosphate, prostaglandin F(2 alpha), and prostag-landin E(2). Am J Obstet Gynecol 2002; 186:745–50.

    Article  PubMed  CAS  Google Scholar 

  101. Ledingham MA, Thomson AJ, Young A et al. Changes in the expression of nitric oxide synthase in the human uterine cervix during pregnancy and parturition. Mol Hum Reprod 2000; 6:1041–48.

    Article  PubMed  CAS  Google Scholar 

  102. Bishop E. Pelvic scoring for elective induction. Obstet Gynecol 1964; 24:266.

    PubMed  CAS  Google Scholar 

  103. Wood C, Bannerman R, Booth R et al. The prediction of premature labor by observation of the cervix and external tocography. Am J Obstet Gynecol 1965; 91:396.

    PubMed  CAS  Google Scholar 

  104. Catalano PM, Ashikaga T, Mann LI. Cervical change and uterine activity as predictors of preterm delivery. Am J Perinatol 1989; 6:185–90.

    PubMed  CAS  Google Scholar 

  105. Leveno KJ, Cox K, Roark ML. Cervical dilatation and prematurity revisited. Obstet Gynecol 1986; 68:434–35.

    PubMed  CAS  Google Scholar 

  106. Heath VC, Southall TR, Souka AP et al. Cervical length at 23 weeks of gestation: Prediction of spontaneous preterm delivery. Ultrasound Obstet Gynecol 1998; 12:312–17.

    Article  PubMed  CAS  Google Scholar 

  107. Holbrook Jr RH, Falcon J, Herron M et al. Evaluation of the weekly cervical examination in a preterm birth prevention program. Am J Perinatol 1987; 4:240–44.

    PubMed  Google Scholar 

  108. Bouyer J, Papiernik E, Dreyfus J et al. Maturation signs of the cervix and prediction of preterm birth. Obstet Gynecol 1986; 68:209–14.

    PubMed  CAS  Google Scholar 

  109. Hassan SS, Romero R, Berry SM et al. Patients with an ultrasonographic cervical length < or =15 mm have nearly a 50% risk of early spontaneous preterm delivery. Am J Obstet Gynecol 2000; 182:1458–67.

    Article  PubMed  CAS  Google Scholar 

  110. Papiernik E, Bouyer J, Collin D et al. Precocious cervical ripening and preterm labor. Obstet Gynecol 1986; 67:238–42.

    PubMed  CAS  Google Scholar 

  111. Anderson AB, Turnbull AC. Relationship between length of gestation and cervical dilatation, uterine contractility, and other factors during pregnancy. Am J Obstet Gynecol 1969; 105:1207–14.

    PubMed  CAS  Google Scholar 

  112. Iams JD, Goldenberg RL, Meis PJ et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med 1996; 334:567–72.

    Article  PubMed  CAS  Google Scholar 

  113. Stubbs TM, Van Dorsten JP, Miller IIIrd MC. The preterm cervix and preterm labor: Relative risks, predictive values, and change over time. Am J Obstet Gynecol 1986; 155:829–34.

    PubMed  CAS  Google Scholar 

  114. Gomez R, Galasso M, Romero R et al. Ultrasonographic examination of the uterine cervix is better than cervical digital examination as a predictor of the likelihood of premature delivery in patients with preterm labor and intact membranes. Am J Obstet Gynecol 1994; 171:956–64.

    PubMed  CAS  Google Scholar 

  115. Stys SJ, Clewell WH, Meschia G. Changes in cervical compliance at parturition independent of uterine activity. Am J Obstet Gynecol 1978; 130:414–18.

    PubMed  CAS  Google Scholar 

  116. Skinner SJ, Liggins GC. Glycosaminoglycans and collagen in human amnion from pregnancies with and without premature rupture of the membranes. J Dev Physiol 1981; 3:111–21.

    PubMed  CAS  Google Scholar 

  117. McLaren J, Malak TM, Bell SC. Structural characteristics of term human fetal membranes prior to labour: Identification of an area of altered morphology overlying the cervix. Hum Reprod 1999; 14:237–41.

    Article  PubMed  CAS  Google Scholar 

  118. Malak TM, Bell SC. Structural characteristics of term human fetal membranes: A novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynaecol 1994; 101:375–86.

    PubMed  CAS  Google Scholar 

  119. Bell SC, Pringle JH, Taylor DJ et al. Alternatively spliced tenascin-C mRNA isoforms in human fetal membranes. Mol Hum Reprod 1999; 5:1066–76.

    Article  PubMed  CAS  Google Scholar 

  120. Malak TM, Mulholland G, Bell SC. Morphometric characteristics of the decidua, cytotrophoblast, and connective tissue of the prelabor ruptured fetal membranes. Ann NY Acad Sci 1994; 734:430–32.

    Article  PubMed  CAS  Google Scholar 

  121. Hieber AD, Corcino D, Motosue J et al. Detection of elastin in the human fetal membranes: Proposed molecular basis for elasticity. Placenta 1997; 18:301–12.

    Article  PubMed  CAS  Google Scholar 

  122. Bryant-Greenwood GD. The extracellular matrix of the human fetal membranes: Structure and function. Placenta 1998; 19:1–11.

    Article  PubMed  CAS  Google Scholar 

  123. Iams JD, Casal D, McGregor JA et al. Fetal fibronectin improves the accuracy of diagnosis of preterm labor. Am J Obstet Gynecol 1995; 173:141–45.

    Article  PubMed  CAS  Google Scholar 

  124. Lockwood CJ, Senyei AE, Dische MR et al. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. N Engl J Med 1991; 325:669–74.

    Article  PubMed  CAS  Google Scholar 

  125. Nageotte MP, Casal D, Senyei AE. Fetal fibronectin in patients at increased risk for premature birth. Am J Obstet Gynecol 1994; 170:20–25.

    PubMed  CAS  Google Scholar 

  126. Oshiro B, Edwin S, Silver R. Human fibronectin and human tenascin production in human amnion cells. J Soc Gynecol Invest 1996; 3:351 A.

    Google Scholar 

  127. Maymon E, Romero R, Pacora P et al. Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. Am J Obstet Gynecol 2000; 183:914–20.

    Article  PubMed  CAS  Google Scholar 

  128. Maymon E, Romero R, Pacora P et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol 2000; 183:94–99.

    PubMed  CAS  Google Scholar 

  129. Helmig BR, Romero R, Espinoza J et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intra-amniotic infection. J Matern Fetal Neonatal Med 2002; 12:237–46.

    Article  PubMed  CAS  Google Scholar 

  130. Vadillo-Ortega F, Hernandez A, Gonzalez-Avila G et al. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. Am J Obstet Gynecol 1996; 174:1371–76.

    Article  PubMed  CAS  Google Scholar 

  131. Everts V, van der Z E, Creemers L et al. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J 1996; 28:229–45.

    Article  PubMed  CAS  Google Scholar 

  132. Reboul P, Pelletier JP, Tardif G et al. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest 1996; 97:2011–19.

    PubMed  CAS  Google Scholar 

  133. Fortunato SJ, Menon R. Screening of novel matrix metalloproteinases (MMPs) in human fetal membranes. J Assist Reprod Genet 2002; 19:483–86.

    Article  PubMed  Google Scholar 

  134. Velasco G, Pendas AM, Fueyo A et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 1999; 274:4570–76.

    Article  PubMed  CAS  Google Scholar 

  135. Maymon E, Romero R, Pacora P et al. A role for the 72 kDa gelatinase (MMP-2) and its inhibitor (TIMP-2) in human parturition, premature rupture of membranes and intraamniotic infection. J Perinat Med 2001; 29:308–16.

    Article  PubMed  CAS  Google Scholar 

  136. Lei H, Furth EE, Kalluri R et al. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J Clin Invest 1996; 98:1971–78.

    PubMed  CAS  Google Scholar 

  137. Fortunato SJ, Menon R, Bryant C et al. Programmed cell death (apoptosis) as a possible pathway to metalloproteinase activation and fetal membrane degradation in premature rupture of membranes. Am J Obstet Gynecol 2000; 182:1468–76.

    Article  PubMed  CAS  Google Scholar 

  138. Fortunato SJ, Menon R, Lombardi SJ. Support for an infection-induced apoptotic pathway in human fetal membranes. Am J Obstet Gynecol 2001; 184:1392–97.

    Article  PubMed  CAS  Google Scholar 

  139. Lei H, Kalluri R, Furth EE et al. Rat amnion type IV collagen composition and metabolism: Implications for membrane breakdown. Biol Reprod 1999; 60:176–82.

    Article  PubMed  CAS  Google Scholar 

  140. McLaren J, Taylor DJ, Bell SC. Increased incidence of apoptosis in nonlabour-affected cytotropho-blast cells in term fetal membranes overlying the cervix. Hum Reprod 1999; 14:2895–900.

    Article  PubMed  CAS  Google Scholar 

  141. McLaren J, Taylor DJ, Bell SC. Increased concentration of pro-matrix metalloproteinase 9 in term fetal membranes overlying the cervix before labor: Implications for membrane remodeling and rupture. Am J Obstet Gynecol 2000; 182:409–16.

    Article  PubMed  CAS  Google Scholar 

  142. Bell SC, Meade EA. Fetal membrane rupture. In: Critchley H, Bennett P, Thornton S, eds. Preterm birth. London: RCOG Press, 2004:195–212.

    Google Scholar 

  143. Greer I. Cervical ripening. In: Drife J, Calder A, eds. Prostaglandins and the Uterus. London: Springer-Verlag, 1992:191.

    Google Scholar 

  144. Calder A. Pharmacological management of the unripe cervix in the human. In: Naftolin F, Stubblefield P, eds. Dilatation of the Uterine Cervix. New York: Raven Press, 1980:317.

    Google Scholar 

  145. Bennett PR, Elder MG, Myatt L. The effects of lipoxygenase metabolites of arachidonic acid on human myometrial contractility. Prostaglandins 1987; 33:837–44.

    Article  PubMed  CAS  Google Scholar 

  146. Carraher R, Hahn DW, Ritchie DM et al. Involvement of lipoxygenase products in myometrial contractions. Prostaglandins 1983; 26:23–32.

    Article  PubMed  CAS  Google Scholar 

  147. Ritchie DM, Hahn DW, McGuire JL. Smooth muscle contraction as a model to study the mediator role of endogenous lipoxygenase products of arachidonic acid. Life Sci 1984; 34:509–13.

    Article  PubMed  CAS  Google Scholar 

  148. Wiqvist N, Lindblom B, Wikland M et al. Prostaglandins and uterine contractility. Acta Obstet Gynecol Scand Suppl 1983; 113:23–29.

    PubMed  CAS  Google Scholar 

  149. Rajabi M, Solomon S, Poole AR. Hormonal regulation of interstitial collagenase in the uterine cervix of the pregnant guinea pig. Endocrinology 1991; 128:863–71.

    PubMed  CAS  Google Scholar 

  150. Ellwood DA, Mitchell MD, Anderson AB et al. The in vitro production of prostanoids by the human cervix during pregnancy: Preliminary observations. Br J Obstet Gynaecol 1980; 87:210–14.

    PubMed  CAS  Google Scholar 

  151. Calder AA, Greer IA. Pharmacological modulation of cervical compliance in the first and second trimesters of pregnancy. Semin Perinatol 1991; 15:162–72.

    PubMed  CAS  Google Scholar 

  152. Novy MJ, Liggins GC. Role of prostaglandins, prostacyclin, and thromboxanes in the physiologic control of the uterus and in parturition. Semin Perinatol 1980; 4:45–66.

    PubMed  CAS  Google Scholar 

  153. Mitchell MD. The mechanism(s) of human parturition. J Dev Physiol 1984; 6:107–18.

    PubMed  CAS  Google Scholar 

  154. MacDonald PC, Schultz FM, Duenhoelter JH et al. Initiation of human parturition. I. Mechanism of action of arachidonic acid. Obstet Gynecol 1974; 44:629–36.

    PubMed  CAS  Google Scholar 

  155. Thorburn GD, Challis JR. Endocrine control of parturition. Physiol Rev 1979; 59:863–918.

    PubMed  CAS  Google Scholar 

  156. Challis JR, Olson D. Parturition. In: Knobil E, Neill J, eds. The Physiology of Reproduction. New York: Raven Press, 1988:2177.

    Google Scholar 

  157. Bleasdale JE, Johnston JM. Prostaglandins and human parturition: Regulation of arachidonic acid mobilization. Rev Perinat Med 1985; 5:151.

    Google Scholar 

  158. Challis JRG. Endocrine control of parturition. Physiol Rev 1979; 59:863.

    PubMed  Google Scholar 

  159. Romero R, Mazor M, Munoz H et al. The preterm labor syndrome. Ann NY Acad Sci 1994; 734:414–29.

    Article  PubMed  CAS  Google Scholar 

  160. Karim SM, Filshie GM. Therapeutic abortion using prostaglandin F2alpha. Lancet 1970; 1:157–59.

    Article  PubMed  CAS  Google Scholar 

  161. Embrey MP. Induction of abortion by prostaglandins El and E2. Br Med J 1970; 1:258–60.

    Google Scholar 

  162. Comparison of intra-amniotic prostaglandin F2 alpha and hypertonic saline for induction of second-trimester abortion. Br Med J 1976; 1:1373–76.

    Google Scholar 

  163. Termination of second trimester pregnancy by intramuscular injection of 16-phenoxy-omega-17,18,19,20-tetranor-PGE2 methyl sulphonylamide. Int J Gynaecol Obstet 1982; 20:383–86.

    Google Scholar 

  164. Husslein P. Use of prostaglandins for induction of labor. Semin Perinatol 1991; 15:173–81.

    PubMed  CAS  Google Scholar 

  165. Macer J, Buchanan D, Yonekura ML. Induction of labor with prostaglandin E2 vaginal suppositories. Obstet Gynecol 1984; 63:664–68.

    PubMed  CAS  Google Scholar 

  166. MacKenzie IZ. Prostaglandins and midtrimester abortion. In: Drife J, Calder A, eds. Prostaglandins and the Uterus. London: Springer-Verlag, 1992:119.

    Google Scholar 

  167. World Health Organization Task Force. Repeated vaginal administration of 15-methyl pgf2 alpha for termination of pregnancy in the 13th to 20th week of gestation. Contraception 1977; 16:175.

    Article  Google Scholar 

  168. Husslein P. Prostaglandins for induction of labour. In: Drife J, Calder A, eds. Prostaglandins and the Uterus. London: Springer-Verlag, 1992.

    Google Scholar 

  169. Gordon-Wright AP, Elder MG. Prostaglandin E2 tablets used intravaginally for the induction of labour. Br J Obstet Gynaecol 1979; 86:32–36.

    PubMed  CAS  Google Scholar 

  170. Ekman G, Forman A, Marsal K et al. Intravaginal versus intracervical application of prostaglandin E2 in viscous gel for cervical priming and induction of labor at term in patients with an unfavorable cervical state. Am J Obstet Gynecol 1983; 147:657–61.

    PubMed  CAS  Google Scholar 

  171. Skarnes RC, Harper MJ. Relationship between endotoxin-induced abortion and the synthesis of prostaglandin F. Prostaglandins 1972; 1:191–203.

    Article  PubMed  CAS  Google Scholar 

  172. Harper MJ, Skarnes RC. Inhibition of abortion and fetal death produced by endotoxin or prostaglandin F2alpha. Prostaglandins 1972; 2:295–309.

    Article  PubMed  CAS  Google Scholar 

  173. Giri SN, Stabenfeldt GH, Moseley TA et al. Role of eicosanoids in abortion and its prevention by treatment with flunixin meglumine in cows during the first trimester of pregnancy. Zentralbl Veterinarmed A 1991; 38:445–59.

    PubMed  CAS  Google Scholar 

  174. Keirse MJ. Eicosanoids in human pregnancy and parturition. In: Mitchell M, ed. Eicosanoids in Reproduction. Boca Raton, FL: CRC Press, 1990:199.

    Google Scholar 

  175. Sellers SM, Mitchell MD, Anderson AB et al. The relation between the release of prostaglandins at amniotomy and the subsequent onset of labour. Br J Obstet Gynaecol 1981; 88:1211–16.

    PubMed  CAS  Google Scholar 

  176. Romero R, Emamian M, Wan M et al. Increased concentrations of arachidonic acid lipoxygenase metabolites in amniotic fluid during parturition. Obstet Gynecol 1987; 70:849–51.

    PubMed  CAS  Google Scholar 

  177. Romero R, Wu YK, Mazor M et al. Increased amniotic fluid leukotriene C4 concentration in term human parturition. Am J Obstet Gynecol 1988; 159:655–57.

    PubMed  CAS  Google Scholar 

  178. Romero R, Emamian M, Quintero R et al. Amniotic fluid prostaglandin levels and intra-amniotic infections. Lancet 1986; 1:1380.

    Article  PubMed  CAS  Google Scholar 

  179. Romero R, Wu YK, Mazor M et al. Amniotic fluid prostaglandin E2 in preterm labor. Prostaglandins Leukot Essent Fatty Acids 1988; 34:141–45.

    Article  PubMed  CAS  Google Scholar 

  180. Romero R, Emamian M, Wan M et al. Prostaglandin concentrations in amniotic fluid of women with intra-amniotic infection and preterm labor. Am J Obstet Gynecol 1987; 157:1461–67.

    PubMed  CAS  Google Scholar 

  181. Romero R, Wu YK, Sirtori M et al. Amniotic fluid concentrations of prostaglandin F2 alpha, 13,l4-dihydro-15-keto-prostaglandin F2 alpha (PGFM) and 11-deoxy-13,14-dihydro-15-keto-11,16-cyclo-prostaglandin E2 (PGEM-LL) in preterm labor. Prostaglandins 1989; 37:149–61.

    Article  PubMed  CAS  Google Scholar 

  182. Keirse MJ. Endogenous prostaglandins in human parturition. In: Keirse MA, Gravenhorst J, eds. Human Parturition. The Hague, Netherlands: Nijhoff Publishers, 1979:101.

    Google Scholar 

  183. Romero R, Baumann P, Gonzalez R et al. Amniotic fluid prostanoid concentrations increase early during the course of spontaneous labor at term. Am J Obstet Gynecol 1994; 171:1613–20.

    PubMed  CAS  Google Scholar 

  184. Romero R, Baumann P, Gomez R et al. The relationship between spontaneous rupture of membranes, labor, and microbial invasion of the amniotic cavity and amniotic fluid concentrations of prostaglandins and thromboxane B2 in term pregnancy. Am J Obstet Gynecol 1993; 168:1654–64.

    PubMed  CAS  Google Scholar 

  185. Romero R, Munoz H, Gomez R et al. Increase in prostaglandin bioavailability precedes the onset of human parturition. Prostaglandins Leukot Essent Fatty Acids 1996; 54:187–91.

    Article  PubMed  CAS  Google Scholar 

  186. Keirse MJ, Mitchell MD, Turnbull AC. Changes in prostaglandin F and 13,14-dihydro-15-keto-prostaglandin F concentrations in amniotic fluid at the onset of and during labour. Br J Obstet Gynaecol 1977; 84:743–46.

    PubMed  CAS  Google Scholar 

  187. Keirse MJ, Turnbull AC. E prostaglandins in amniotic fluid during late pregnancy and labour. J Obstet Gynaecol Br Commonw 1973; 80:970–73.

    PubMed  CAS  Google Scholar 

  188. Dray F, Frydman R. Primary prostaglandins in amniotic fluid in pregnancy and spontaneous labor. Am J Obstet Gynecol 1976; 126:13–19.

    PubMed  CAS  Google Scholar 

  189. Salmon JA, Amy JJ. Levels of prostaglandin F2 alpha in amniotic fluid during pregnancy and labour. Prostaglandins 1973; 4:523.

    Article  CAS  Google Scholar 

  190. Olson DM, Zakar T, Smieja Z et al. A pathway for the regulation of prostaglandins and parturition. In: Drife J, Calder A, eds. Prostaglandins and the Uterus. London: Springer-Verlag, 1992:149.

    Google Scholar 

  191. Myatt L, Lye SJ. Expression, localization and function of prostaglandin receptors in myometrium. Prostaglandins Leukot Essent Fatty Acids 2004; 70:137–48.

    Article  PubMed  CAS  Google Scholar 

  192. Romero R, Durum S, Dinarello CA et al. Interleukin-1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins 1989; 37:13–22.

    Article  PubMed  CAS  Google Scholar 

  193. Duchesne MJ, Thaler-Dao H, de Paulet AC. Prostaglandin synthesis in human placenta and fetal membranes. Prostaglandins 1978; 15:19–42.

    Article  PubMed  CAS  Google Scholar 

  194. Olson DM, Zakar T, Potestio FA et al. Control of prostaglandin production in human amnion. New Physiol Sci 1990; 5:259.

    CAS  Google Scholar 

  195. Okazaki T, Casey ML, Okita JR et al. Initiation of human parturition. XII. Biosynthesis and metabolism of prostaglandins in human fetal membranes and uterine decidua. Am J Obstet Gynecol 1981; 139:373–81.

    PubMed  CAS  Google Scholar 

  196. Romero R, Mazor M, Manogue K et al. Human decidua: A source of cachectin-tumor necrosis factor. Eur J Obstet Gynecol Reprod Biol 1991; 41:123–27.

    Article  PubMed  CAS  Google Scholar 

  197. Hertelendy F, Zakar T. Prostaglandins and the myometrium and cervix. Prostaglandins Leukotrienes and Essential Fatty Acids 2004; 70:207–22.

    Article  CAS  Google Scholar 

  198. Molnar M, Hertelendy F. Signal-transduction in rat myometrial cells-comparison of the actions of endothelin-1, oxytocin and prostaglandin-F2-Alpha. European Journal of Endocrinology 1995; 133:467–74.

    PubMed  CAS  Google Scholar 

  199. Hertelendy F, Molnar M, Rigo J. Proposed signaling role of Arachidonic-Acid in human myometrium. Molecular and Cellular Endocrinology 1995; 110:113–18.

    Article  PubMed  CAS  Google Scholar 

  200. Molnar M, Romero R, Hertelendy F. Interleukin-1 and tumor-necrosis-factor stimulate Arachidonic-Acid release and phospholipid-metabolism in human myometrial cells. Am J Obstet Gynecol 1993; 169:825–29.

    PubMed  CAS  Google Scholar 

  201. Romero R, Manogue KR, Mitchell MD et al. Infection and labor. IV. Cachectin-tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. Am J Obstet Gynecol 1989; 161:336–41.

    PubMed  CAS  Google Scholar 

  202. Romero R, Wu YK, Oyarzun E et al. A potential role for epidermal growth factor/alpha-transforming growth factor in human parturition. Eur J Obstet Gynecol Reprod Biol 1989; 33:55–60.

    Article  PubMed  CAS  Google Scholar 

  203. Novy MJ, Walsh SW. Dexamethasone and estradiol treatment in pregnant rhesus macaques: Effects on gestational length, maternal plasma hormones, and fetal growth. Am J Obstet Gynecol 1983; 145:920–31.

    PubMed  CAS  Google Scholar 

  204. Potestio FA, Zakar T, Olson DM. Glucocorticoids stimulate prostaglandin synthesis in human amnion cells by a receptor-mediated mechanism. J Clin Endocrinol Metab 1988; 67:1205–10.

    PubMed  CAS  Google Scholar 

  205. Nathanielsz PW, Smith G, Wu W. Topographical specialization of prostaglandin function in late pregnancy and at parturition in the baboon. Prostaglandins Leukot Essent Fatty Acids 2004; 70:199–206.

    Article  PubMed  CAS  Google Scholar 

  206. Coleman RA, Kennedy I, Humphrey PP et al. In: Hansch C, Sammes GTJB, eds. Comprehensive Medicinal Chemistry. Oxford: Pergamon Press, 1990:643–717.

    Google Scholar 

  207. Matsumoto T, Sagawa N, Yoshida M et al. The prostaglandin E2 and F2 alpha receptor genes are expressed in human myometrium and are down-regulated during pregnancy. Biochem Biophys Res Commun 1997; 238:838–41.

    Article  PubMed  CAS  Google Scholar 

  208. Wikland M, Lindblom B, Wiqvist N. Myometrial response to prostaglandins during labor. Gynecol Obstet Invest 1984; 17:131–38.

    PubMed  CAS  Google Scholar 

  209. Wiqvist N, Bryman I, Lindblom B et al. The Role of prostaglandins for the coordination of myometrial forces during labor. Acta Physiologica Hungarica 1985; 65:313–22.

    PubMed  CAS  Google Scholar 

  210. Lye SJ, Ou CW, Tech TG et al. The molecular basis of labour and tocolysis. Fetal Maternal Med Rev 1998; 10:121–36.

    Article  Google Scholar 

  211. Smith GC, Wu WX, Nathanielsz PW. Effects of gestational age and labor on the expression of prostanoid receptor genes in pregnant baboon cervix. Prostaglandins 2001; 63:153–63.

    PubMed  CAS  Google Scholar 

  212. Smith GC, Baguma-Nibasheka M, Wu WX et al. Regional variations in contractile responses to prostaglandins and prostanoid receptor messenger ribonucleic acid in pregnant baboon uterus. Am J Obstet Gynecol 1998; 179:1545–52.

    Article  PubMed  CAS  Google Scholar 

  213. Luckas MJM, Wray S. A comparison of the contractile properties of human myometrium obtained from the upper and lower uterine segments. British Journal of Obstetrics and Gynaecology 2000; 107:1309–11.

    PubMed  CAS  Google Scholar 

  214. Liggins G, Fairclough RJ, Grieves SA et al. Parturition in the sheep. In: Knight J, O’Connor M, eds. The Fetus and Birth. Amsterdam: Elsevier, 1977.

    Google Scholar 

  215. Liggins GC, Fairclough RJ, Grieves SA et al. The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res 1973; 29:111–59.

    PubMed  CAS  Google Scholar 

  216. McDonald TJ, Nathanielsz PW. Bilateral destruction of the fetal paraventricular nuclei prolongs gestation in sheep. Am J Obstet Gynecol 1991; 165:764–70.

    PubMed  CAS  Google Scholar 

  217. Gluckman PD, Mallard C, Boshier DP. The effect of hypothalamic lesions on the length of gestation in fetal sheep. Am J Obstet Gynecol 1991; 165:1464–68.

    PubMed  CAS  Google Scholar 

  218. Honnebier WJ, Swaab DF. The influence of anencephaly upon intrauterine growth of fetus and placenta and upon gestation length. J Obstet Gynaecol Br Commonw 1973; 80:577–88.

    PubMed  CAS  Google Scholar 

  219. Schellenberg JC, Liggins GC. Initiation of labour: Uterine and cervical changes, endocrine changes. In: Chard T, Grudzinskas JG, eds. The Uterus. Cambridge: Cambridge University Press, 1994:308–35.

    Google Scholar 

  220. Kendall JZ, Challis JR, Hart IC et al. Steroid and prostaglandin concentrations in the plasma of pregnant ewes during infusion of adrenocorticotrophin or dexamethasone to intact or hypophysectomized foetuses. J Endocrinol 1977; 75:59–71.

    PubMed  CAS  Google Scholar 

  221. Liggins G, Holm LW, Kennedy PC. Prolonged pregnancy following surgical lesions of the foetal lamb pituitary. J Reprod Fertil 1966; 12:419.

    Google Scholar 

  222. Mecenas CA, Giussani DA, Owiny JR et al. Production of premature delivery in pregnant rhesus monkeys by androstenedione infusion. Nat Med 1996; 2:443–48.

    Article  PubMed  CAS  Google Scholar 

  223. Rees LH, Jack PM, Thomas AL et al. Role of foetal adrenocorticotrophin during parturition in sheep. Nature 1975; 253:274–75.

    Article  PubMed  CAS  Google Scholar 

  224. Liggins GC. Premature parturition after infusion of corticotrophin or cortisol into foetal lambs. J Endocrinol 1968; 42:323–29.

    PubMed  CAS  Google Scholar 

  225. Chan EC, Falconer J, Madsen G et al. A corticotropin-releasing hormone type I receptor antagonist delays parturition in sheep. Endocrinology 1998; 139:3357–60.

    Article  PubMed  CAS  Google Scholar 

  226. Nathanielsz PW, Jenkins SL, Tame JD et al. Local paracrine effects of estradiol are central to parturition in the rhesus monkey. Nat Med 1998; 4:456–59.

    Article  PubMed  CAS  Google Scholar 

  227. Whittle WL, Patel FA, Alfaidy N et al. Glucocorticoid regulation of human and ovine parturition: The relationship between fetal hypothalamic-pituitary-adrenal axis activation and intrauterine pros-taglandin production. Biol Reprod 2001; 64:1019–32.

    Article  PubMed  CAS  Google Scholar 

  228. Challis JRG, Matthews SG, Gibb W et al. Endocrine and paracrine regulation of birth at term and preterm. Endocrine Reviews 2000; 21:514–50.

    Article  PubMed  CAS  Google Scholar 

  229. Tornblom SA, Patel FA, Bystrom B et al. 15-hydroxyprostaglandin dehydrogenase and cyclooxygenase 2 messenger ribonucleic acid expression and immunohistochemical localization in human cervical tissue during term and preterm labor. J Clin Endocrinol Metab 2004; 89:2909–15.

    Article  PubMed  CAS  Google Scholar 

  230. Grammatopoulos DK, Hillhouse EW. Role of corticotropin-releasing hormone in onset of labour. Lancet 1999; 354:1546–49.

    Article  PubMed  CAS  Google Scholar 

  231. Quartero HW, Fry CH. Placental corticotrophin releasing factor may modulate human parturition. Placenta 1989; 10:439–43.

    Article  PubMed  CAS  Google Scholar 

  232. Benedetto C, Petraglia F, Marozio L et al. Corticotropin-releasing hormone increases prostaglandin F2 alpha activity on human myometrium in vitro. Am J Obstet Gynecol 1994; 171:126–31.

    PubMed  CAS  Google Scholar 

  233. Yoon BH, Romero R, Jun JK et al. An increase in fetal plasma cortisol but not dehydroepiandrosterone sulfate is followed by the onset of preterm labor in patients with preterm premature rupture of the membranes. Am J Obstet Gynecol 1998; 179:1107–14.

    Article  PubMed  CAS  Google Scholar 

  234. Osman I, Young A, Ledingham MA et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod 2003; 9:41–45.

    Article  PubMed  CAS  Google Scholar 

  235. Thomson AJ, Telfer JF, Young A et al. Leukocytes infiltrate the myometrium during human parturition: Further evidence that labour is an inflammatory process. Human Reproduction 1999; 14:229–36.

    Article  PubMed  CAS  Google Scholar 

  236. Yellon SM, Madder AM, Kirby MA. The role of leukocyte traffic and activation in parturition. J Soc Gynecol Investig 2003; 10:323–38.

    Article  PubMed  CAS  Google Scholar 

  237. Romero R, Brody DT, Oyarzun E et al. Infection and labor. III. Interleukin-1: A signal for the onset of parturition. Am J Obstet Gynecol 1989; 160:1117–23.

    PubMed  CAS  Google Scholar 

  238. Romero R, Mazor M, Brandt F et al. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am J Reprod Immunol 1992; 27:117–23.

    PubMed  CAS  Google Scholar 

  239. Keelan JA, Blumenstein M, Helliwell RJ et al. Cytokines, prostaglandins and parturition—a review. Placenta 2003; 24(Suppl A):S33–S46.

    Article  PubMed  CAS  Google Scholar 

  240. Romero R, Gomez R, Galasso M et al. Macrophage inflammatory protein-1 alpha in term and preterm parturition: Effect of microbial invasion of the amniotic cavity. Am J Reprod Immunol 1994; 32:108–13.

    PubMed  CAS  Google Scholar 

  241. Cohen J, Ghezzi F, Romero R et al. GRO alpha in the fetomaternal and amniotic fluid compartments during pregnancy and parturition. Am J Reprod Immunol 1996; 35:23–29.

    PubMed  CAS  Google Scholar 

  242. Esplin MS, Romero R, Chaiworapongsa T et al. Amniotic fluid levels of immunoreactive monocyte chemotactic protein-1 increase during term parturition. J Matern Fetal Neonatal Med 2003; 14:51–56.

    Article  PubMed  CAS  Google Scholar 

  243. Romero R, Ceska M, Avila C et al. Neutrophil attractant/activating peptide-l/interleukin-8 in term and preterm parturition. Am J Obstet Gynecol 1991; 165:813–20.

    PubMed  CAS  Google Scholar 

  244. Keelan JA, Yang J, Romero RJ et al. Epithelial cell-derived neutrophil-activating peptide-78 is present in fetal membranes and amniotic fluid at increased concentrations with intra-amniotic infection and preterm delivery. Biology of Reproduction 2004; 70:253–59.

    Article  PubMed  CAS  Google Scholar 

  245. Haddad R, Tromp G, Kuivaniemi H et al. Spontaneous labor at term is characterized by a genomic signature of acute inflammation in the chorioamniotic membranes but not in the systemic circulation. Am J Obstet Gynecol 2004; 191(6):S138.

    Article  Google Scholar 

  246. Kim YM, Romero R, Chaiworapongsa T et al. Toll-like receptor-2 and-4 in the chorioamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am J Obstet Gynecol 2004; 191:1346–55.

    Article  PubMed  CAS  Google Scholar 

  247. Muzio M, Bosisio D, Polentarutti N et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: Selective expression of TLR 3 in dendritic cells. Journal of Immunology 2000; 164:5998–6004.

    CAS  Google Scholar 

  248. Van Wagenen G, Newton WH. Pregnancy in the monkey after removal of the fetus. Surg Gynecol Obstet 1943; 77:539–43.

    Google Scholar 

  249. Albrecht ED, Crenshaw MC, Pepe GJ. The Effect of estrogen on placental delivery after fetectomy in baboons. Am J Obstet Gynecol 1989; 160:237–41.

    PubMed  CAS  Google Scholar 

  250. Nathanielsz PW, Figueroa JP, Honnebier MB. In the rhesus monkey placental retention after fetectomy at 121 to 130 days’ gestation outlasts the normal duration of pregnancy. Am J Obstet Gynecol 1992; 166:1529–35.

    PubMed  CAS  Google Scholar 

  251. Lanman JT, Mitsudo SM, Brinson AO et al. Fetectomy in monkeys (Macaca mulatta): Retention of the placenta past normal term. Biol Reprod 1975; 12:522–25.

    Article  PubMed  CAS  Google Scholar 

  252. Wadhwa PD, Garite TJ, Porto M et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: A prospective investigation. Am J Obstet Gynecol 2004; 191:1063–69.

    Article  PubMed  CAS  Google Scholar 

  253. Leung TN, Chung TKH, Madsen G et al. Elevated mid-trimester maternal corticotrophin-releasing hormone levels in pregnancies that delivered before 34 weeks. British Journal of Obstetrics and Gynaecology 1999; 106:1041–46.

    PubMed  CAS  Google Scholar 

  254. Hobel CJ, Dunkel-Schetter C, Roesch SC et al. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol 1999; 180:S257–S263.

    Article  PubMed  CAS  Google Scholar 

  255. McLean M, Smith R. Corticotrophin-releasing hormone and human parturition. Reproduction 2001; 121:493–501.

    Article  PubMed  CAS  Google Scholar 

  256. Romero R. The child is the father of the man. Prenat Neonat Med 1996; 1:8–11.

    Google Scholar 

  257. Eschenbach DA, Gravett MG, Chen KC et al. Bacterial vaginosis during pregnancy. An association with prematurity and postpartum complications. Scand J Urol Nephrol Suppl 1984; 86:213–22.

    PubMed  CAS  Google Scholar 

  258. Flynn CA, Helwig AL, Meurer LN. Bacterial vaginosis in pregnancy and the risk of prematurity: A meta-analysis. J Fam Pract 1999; 48:885–92.

    PubMed  CAS  Google Scholar 

  259. Hillier SL, Nugent RP, Eschenbach DA et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. N Engl J Med 1995; 333:1737–42.

    Article  PubMed  CAS  Google Scholar 

  260. Meis PJ, Goldenberg RL, Mercer B et al. The preterm prediction study-significance of vaginal infections. Am J Obstet Gynecol 1995; 173:1231–35.

    Article  PubMed  CAS  Google Scholar 

  261. Cassell GH, Davis RO, Waites KB et al. Isolation of Mycoplasma hominis and Ureaplasma urealyticum from amniotic fluid at 16–20 weeks of gestation: Potential effect on outcome of pregnancy. Sex Transm Dis 1983; 10:294–302.

    PubMed  CAS  Google Scholar 

  262. Gray DJ, Robinson HB, Malone J et al. Adverse outcome in pregnancy following amniotic fluid isolation of Ureaplasma urealyticum. Prenat Diagn 1992; 12:111–17.

    Article  PubMed  CAS  Google Scholar 

  263. Horowitz S, Mazor M, Romero R et al. Infection of the amniotic cavity with Ureaplasma urealyticum in the midtrimester of pregnancy. J Reprod Med 1995; 40:375–79.

    PubMed  CAS  Google Scholar 

  264. Carroll SG, Papaioannou S, Ntumazah IL et al. Lower genital tract swabs in the prediction of intrauterine infection in preterm prelabour rupture of the membranes. Br J Obstet Gynaecol 1996; 103:54–59.

    PubMed  CAS  Google Scholar 

  265. Weiner CP, Sabbagha RE, Vaisrub N et al. A hypothetical model suggesting suboptimal intrauterine growth in infants delivered preterm. Obstet Gynecol 1985; 65:323–26.

    PubMed  CAS  Google Scholar 

  266. MacGregor SN, Sabbagha RE, Tamura RK et al. Differing fetal growth patterns in pregnancies complicated by preterm labor. Obstet Gynecol 1988; 72:834–37.

    PubMed  CAS  Google Scholar 

  267. Tamura RK, Sabbagha RE, Depp R et al. Diminished growth in fetuses born preterm after spontaneous labor or rupture of membranes. Am J Obstet Gynecol 1984; 148:1105–10.

    PubMed  CAS  Google Scholar 

  268. Williams MC, O’Brien WF, Nelson RN et al. Histologic chorioamnionitis is associated with fetal growth restriction in term and preterm infants. Am J Obstet Gynecol 2000; 183:1094–99.

    Article  PubMed  CAS  Google Scholar 

  269. Bukowski R, Gahn D, Denning J et al. Impairment of growth in fetuses destined to deliver preterm. Am J Obstet Gynecol 2001; 185:463–67.

    Article  PubMed  CAS  Google Scholar 

  270. Ott WJ. Intrauterine growth retardation and preterm delivery. Am J Obstet Gynecol 1993; 168:1710–15.

    PubMed  CAS  Google Scholar 

  271. Zeitlin J, Ancel PY, Saurel-Cubizolles MJ et al. The relationship between intrauterine growth restriction and preterm delivery: An empirical approach using data from a European case-control study. BJOG 2000; 107:750–58.

    Article  PubMed  CAS  Google Scholar 

  272. Romero R, Gomez R, Ghezzi F et al. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol 1998; 179:186–93.

    Article  PubMed  CAS  Google Scholar 

  273. Gomez R, Romero R, Ghezzi F et al. The fetal inflammatory response syndrome. Am J Obstet Gynecol 1998; 179:194–202.

    Article  PubMed  CAS  Google Scholar 

  274. Goncalves LF, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev 2002; 8:3–13.

    Article  PubMed  Google Scholar 

  275. Minkoff H. Prematurity: Infection as an etiologic factor. Obstet Gynecol 1983; 62:137–44.

    PubMed  CAS  Google Scholar 

  276. Romero R, Sirtori M, Oyarzun E et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol 1989; 161:817–24.

    PubMed  CAS  Google Scholar 

  277. Romero R, Mazor M, Wu YK et al. Infection in the pathogenesis of preterm labor. Semin Perinatol 1988; 12:262–79.

    PubMed  CAS  Google Scholar 

  278. Bang B. The etiology of epizootic abortion. J Comp Anthol Ther 1987; 10:125.

    Google Scholar 

  279. Fidel Jr PL, Romero R, Wolf N et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol 1994; 170:1467–75.

    PubMed  CAS  Google Scholar 

  280. Kullander S. Fever and parturition. An experimental study in rabbits. Acta Obstet Gynecol Scand Suppl 1977; 77–85.

    Google Scholar 

  281. McDuffie Jr RS, Sherman MP, Gibbs RS. Amniotic fluid tumor necrosis factor-alpha and interleukin-1 in a rabbit model of bacterially induced preterm pregnancy loss. Am J Obstet Gynecol 1992; 167:1583–88.

    PubMed  CAS  Google Scholar 

  282. McKay DG, Wong TC. The effect of bacterial endotoxin on the placenta of the rat. Am J Pathol 1963; 42:357–77.

    PubMed  CAS  Google Scholar 

  283. Rieder RF, Thomas L. Studies on the mechanisms involved in the production of abortion by endotoxin. J Immunol 1960; 84:189–93.

    Google Scholar 

  284. Romero R, Munoz H, Gomez R et al. Antibiotic therapy reduces the rate of infection-induced preterm delivery and perinatal mortality. Am J Obstet Gynecol 1994; 170:390.

    Google Scholar 

  285. Takeda Y, Tsuchiya I. Studies on the pathological changes caused by the injection of the Shwartzman filtrate and the endotoxin into pregnant rabbits. Jap J Exper Med 1953; 21:9–16.

    Google Scholar 

  286. Zahl PA, Bjerknes C. Induction of decidua-placental hemorrhage in mice by the endotoxins of certain gram-negative bacteria. Proc Soc Exper Biol Med 1943; 54:329–32.

    Google Scholar 

  287. Benedetti TJ, Valle R, Ledger WJ. Antepartum pneumonia in pregnancy. Am J Obstet Gynecol 1982; 144:413–17.

    PubMed  CAS  Google Scholar 

  288. Cunningham FG, Morris GB, Mickal A. Acute pyelonephritis of pregnancy: A clinical review. Obstet Gynecol 1973; 42:112–17.

    PubMed  CAS  Google Scholar 

  289. Fan YD, Pastorek JG, Miller Jr JM et al. Acute pyelonephritis in pregnancy. Am J Perinatol 1987; 4:324–26.

    PubMed  CAS  Google Scholar 

  290. Finland M, Dublin TD. Pneumococcic pneumonia complicating pregnancy and the puerperium. JAMA 1939; 112:1027–32.

    Google Scholar 

  291. Gilles HM, Lawson JB, Sibelas M et al. Malaria, anaemia and pregnancy. Ann Trop Med Parasitol 1969; 63:245–63.

    PubMed  CAS  Google Scholar 

  292. Herd N, Jordan T. An investigtion of malaria during pregnancy in Zimbabwe. Afr J Med 1981; 27:62.

    Google Scholar 

  293. Hibbard L, Thrupp L, Summeril S et al. Treatment of pyelonephritis in pregnancy. Am J Obstet Gynecol 1967; 98:609–15.

    PubMed  CAS  Google Scholar 

  294. Kass E. Maternal urinary tract infection. NY State J Med 1962; 1:2822–26.

    Google Scholar 

  295. Madinger NE, Greenspoon JS, Ellrodt AG. Pneumonia during pregnancy: Has modern technology improved maternal and fetal outcome? Am J Obstet Gynecol 1989; 161:657–62.

    PubMed  CAS  Google Scholar 

  296. McLane CM. Pyelitis of pregnancy: A five-year study. Am J Obstet Gynecol 1939; 38:117.

    Google Scholar 

  297. Oxhorn H. The changing aspects of pneumonia complicating pregnancy. Am J Obstet Gynecol 1955; 70:1057.

    Google Scholar 

  298. Stevenson CS, Glasko AJ, Gillespie EC. Treatment of typhoid in pregnancy with chloramphenicol (chloromycetin). JAMA 1951; 146:1190.

    CAS  Google Scholar 

  299. Wing ES, Troppoli DV. The intrauterine transmission of typhoid. JAMA 1930; 95:405.

    Google Scholar 

  300. Gomez R, Ghezzi F, Romero R et al. Premature labor and intra-amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol 1995; 22:281–342.

    PubMed  CAS  Google Scholar 

  301. Fidel P, Ghezzi F, Romero R et al. The effect of antibiotic therapy on intrauterine infection-induced preterm parturition in rabbits. J Matern Fetal Neonatal Med 2003; 14:57–64.

    Article  PubMed  CAS  Google Scholar 

  302. Romero R, Oyarzun E, Mazor M et al. Meta-analysis of the relationship between asymptomatic bacteriuria and preterm delivery/low birth weight. Obstet Gynecol 1989; 73:576–82.

    PubMed  CAS  Google Scholar 

  303. Romero R, Salafia CM, Athanassiadis AP et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol 1992; 166:1382–88.

    PubMed  CAS  Google Scholar 

  304. Romero R, Espinoza J, Chaiworapongsa T et al. Infection and prematurity and the role of preventive strategies. Semin Neonatol 2002; 7:259–74.

    PubMed  Google Scholar 

  305. Watts DH, Krohn MA, Hillier SL et al. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol 1992; 79:351–57.

    Article  PubMed  CAS  Google Scholar 

  306. Romero R, Gonzalez R, Sepulveda W et al. Infection and labor. VIII. Microbial invasion of the amniotic cavity in patients with suspected cervical incompetence: Prevalence and clinical significance. Am J Obstet Gynecol 1992; 167:1086–91.

    PubMed  CAS  Google Scholar 

  307. Romero R, Shamma F, Avila C et al. Infection and labor. VI. Prevalence, microbiology, and clini cal significance of intraamniotic infection in twin gestations with preterm labor. Am J Obstet Gynecol 1990; 163:757–61.

    PubMed  CAS  Google Scholar 

  308. Romero R, Nores J, Mazor M et al. Microbial invasion of the amniotic cavity during term labor. Prevalence and clinical significance. J Reprod Med 1993; 38:543–48.

    PubMed  CAS  Google Scholar 

  309. Yoon BH, Romero R, Kim CJ et al. Amniotic fluid interleukin-6: A sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. Am J Obstet Gynecol 1995; 172:960–70.

    Article  PubMed  CAS  Google Scholar 

  310. Romero R, Avila C, Santhanam U et al. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest 1990; 85:1392–400.

    PubMed  CAS  Google Scholar 

  311. Romero R, Sepulveda W, Kenney JS et al. Interleukin 6 determination in the detection of microbial invasion of the amniotic cavity. Ciba Found Symp 1992; 167:205–20.

    PubMed  CAS  Google Scholar 

  312. Romero R, Yoon BH, Kenney JS et al. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol 1993; 30:167–83.

    PubMed  CAS  Google Scholar 

  313. Romero R, Munoz H, Gomez R et al. Two thirds of spontaneous abortion/fetal deaths after genetic amniocentesis are the result of a preexisting sub-clinical inflammatory process of the amniotic cavity. Am J Obstet Gynecol 1995; 172:261.

    Article  Google Scholar 

  314. Wenstrom KD, Andrews WW, Tamura T et al. Elevated amniotic fluid interleukin-6 levels at genetic amniocentesis predict subsequent pregnancy loss. Am J Obstet Gynecol 1996; 175:830–33.

    Article  PubMed  CAS  Google Scholar 

  315. Yoon BH, Oh SY, Romero R et al. An elevated amniotic fluid matrix metalloproteinase-8 level at the time of mid-trimester genetic amniocentesis is a risk factor for spontaneous preterm delivery. Am J Obstet Gynecol 2001; 185:1162–67.

    Article  PubMed  CAS  Google Scholar 

  316. Wenstrom KD, Andrews WW, Hauth JC et al. Elevated second-trimester amniotic fluid interleukin-6 levels predict preterm delivery. Am J Obstet Gynecol 1998; 178:546–50.

    Article  PubMed  CAS  Google Scholar 

  317. Ghidini A, Eglinton GS, Spong CY et al. Elevated mid-trimester amniotic fluid tumor necrosis alpha levels: A predictor of preterm delivery. Am J Obstet Gynecol 1996; 174:307.

    Google Scholar 

  318. Spong CY, Ghidini A, Sherer DM et al. Angiogenin: A marker for preterm delivery in midtrimester amniotic fluid. Am J Obstet Gynecol 1997; 176:415–18.

    Article  PubMed  CAS  Google Scholar 

  319. Goldenberg RL, Andrews WW, Mercer BM et al. The preterm prediction study: Granulocyte colony-stimulating factor and spontaneous preterm birth. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 2000; 182:625–30.

    Article  PubMed  CAS  Google Scholar 

  320. Thompson PJ, Greenough A, Gamsu HR et al. Congenital bacterial sepsis in very preterm infants. J Med Microbiol 1992; 36:117–20.

    PubMed  CAS  Google Scholar 

  321. Placzek MM, Whitelaw A. Early and late neonatal septicaemia. Arch Dis Child 1983; 58:728–31.

    PubMed  CAS  Google Scholar 

  322. Ohlsson A, Vearncombe M. Congenital and nosocomial sepsis in infants born in a regional perinatal unit: Cause, outcome, and white blood cell response. Am J Obstet Gynecol 1987; 156:407–13.

    PubMed  CAS  Google Scholar 

  323. Gerdes JS. Clinicopathologic approach to the diagnosis of neonatal sepsis. Clin Perinatol 1991; 18:361–81.

    PubMed  CAS  Google Scholar 

  324. Boyer KM, Gadzala CA, Kelly PD et al. Selective intrapartum chemoprophylaxis of neonatal group B streptococcal early-onset disease. III. Interruption of mother-to-infant transmission. J Infect Dis 1983; 148:810–16.

    PubMed  CAS  Google Scholar 

  325. Berry SM, Gomez R, Athayde N et al. The role of granulocyte colony stimulating factor in the neutrophilia observed in the fetal inflammatory response syndrome. Am J Obstet Gynecol 1998; 178:S202.

    Google Scholar 

  326. Romero R, Athayde N, Gomez R et al. The fetal inflammatory response syndrome is characterized by the outpouring of a potent extracellular matrix degrading enzyme into the fetal circulation. Am J Obstet Gynecol 1998; 178:S3.

    Google Scholar 

  327. Romero R, Maymon E, Pacora P et al. Further observations on the fetal inflammatory response syndrome: A potential homeostatic role for the soluble receptors of tumor necrosis factor alpha. Am J Obstet Gynecol 2000; 183:1070–77.

    Article  PubMed  CAS  Google Scholar 

  328. Berry SM, Romero R, Gomez R et al. Premature parturition is characterized by in utero activation of the fetal immune system. Am J Obstet Gynecol 1995; 173:1315–20.

    Article  PubMed  CAS  Google Scholar 

  329. Romero R, LaFreniere D, Duff G et al. Human decidua: A potent source of interleukin-1 like activity. 32nd Annual Meeting for the Society for Gynecologic Investigation. Phoenix Arizona J Soc Gynecol Investig 1985.

    Google Scholar 

  330. Romero R, Durum SK, Dinarello CA et al. Interleukin-1: A signal for the initiation of labor in chorioamnionitis. Toronto, Ontario, Canada: 33rd Annual Meeting for the Society for Gynecologic Investigation, 1986.

    Google Scholar 

  331. Romero R, Mazor M, Wu YK et al. Bacterial endotoxin and tumor necrosis factor stimulate prostaglandin production by human decidua. Prostaglandins Leukot Essent Fatty Acids 1989; 37:183–86.

    Article  PubMed  CAS  Google Scholar 

  332. Casey ML, Cox SM, Beutler B et al. Cachectin/tumor necrosis factor-alpha formation in human decidua. Potential role of cytokines in infection-induced preterm labor. J Clin Invest 1989; 83:430–36.

    PubMed  CAS  Google Scholar 

  333. Romero R, Mazor M, Sepulveda W et al. Tumor necrosis factor in preterm and term labor. Am J Obstet Gynecol 1992; 166:1576–87.

    PubMed  CAS  Google Scholar 

  334. Romero R, Mazor M, Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol 1991; 165:969–71.

    PubMed  CAS  Google Scholar 

  335. Silver RM, Lohner WS, Daynes RA et al. Lipopolysaccharide-induced fetal death: The role of tumor-necrosis factor alpha. Biol Reprod 1994; 50:1108–12.

    Article  PubMed  CAS  Google Scholar 

  336. Gomez R, Ghezzi F, Romero R et al. Two thirds of human fetuses with microbial invasion of the amniotic cavity have a detectable systemic cytokine response before birth. Am J Obstet Gynecol 1997; 176:514.

    Google Scholar 

  337. Taniguchi T, Matsuzaki N, Kameda T et al. The enhanced production of placental interleukin-1 during labor and intrauterine infection. Am J Obstet Gynecol 1991; 165:131–37.

    PubMed  CAS  Google Scholar 

  338. Hirsch E, Muhle RA, Mussalli GM et al. Bacterially induced preterm labor in the mouse does not require maternal interleukin-1 signaling. Am J Obstet Gynecol 2002; 186:523–30.

    Article  PubMed  Google Scholar 

  339. Romero R, Gomez R, Ghezzi F et al. A novel form of fetal cardiac dysfunction in preterm premature rupture of membranes. Am J Obstet Gynecol 1999; 180:S27.

    Google Scholar 

  340. Pacora P, Chaiworapongsa T, Maymon E et al. Funisitis and chorionic vasculitis: The histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Med 2002; 11:18–25.

    Article  CAS  Google Scholar 

  341. Yoon BH, Romero R, Park JS et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol 2000; 183:1124–29.

    Article  PubMed  CAS  Google Scholar 

  342. Yoon BH, Romero R, Kim KS et al. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am J Obstet Gynecol 1999; 181:773–79.

    Article  PubMed  CAS  Google Scholar 

  343. Yoon BH, Romero R, Yang SH et al. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol 1996; 174:1433–40.

    Article  PubMed  CAS  Google Scholar 

  344. Yoon BH, Romero R, Park JS et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol 2000; 182:675–81.

    Article  PubMed  CAS  Google Scholar 

  345. Clayton D, McKeigue PM. Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet 2001; 358:1356–60.

    Article  PubMed  CAS  Google Scholar 

  346. Tiret L. Gene-environment interaction: A central concept in multifactorial diseases. Proc Nutr Soc 2002; 61:457–63.

    Article  PubMed  Google Scholar 

  347. US Preventive Services Task Force. Screening for bacterial vaginosis in pregnancy. Recommendations and rationale. Am J Prev Med 2001; 20:59–61.

    Article  Google Scholar 

  348. Sexually transmitted diseases treatment guidelines 2002. Centers for Disease Control and Prevention. MMWR Recomm Rep 2002; 51:1–78.

    Google Scholar 

  349. Carey JC, Klebanoff MA, Hauth JC et al. Metronidazole to prevent preterm delivery in pregnant women with asymptomatic bacterial vaginosis. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med 2000; 342:534–40.

    Article  PubMed  CAS  Google Scholar 

  350. Guise JM, Mahon SM, Aickin M et al. Screening for bacterial vaginosis in pregnancy. Am J Prev Med 2001; 20:62–72.

    Article  PubMed  CAS  Google Scholar 

  351. Hauth JC, Goldenberg RL, Andrews WW et al. Reduced incidence of preterm delivery with metronidazole and erythromycin in women with bacterial vaginosis. N Engl J Med 1995; 333:1732–36.

    Article  PubMed  CAS  Google Scholar 

  352. Klebanoff MA, Guise JM, Carey JC. Treatment recommendations for bacterial vaginosis in pregnant women. Clin Infect Dis 2003; 36:1630–31.

    Article  PubMed  Google Scholar 

  353. Koumans EH, Markowitz LE, Hogan V. Indications for therapy and treatment recommendations for bacterial vaginosis in nonpregnant and pregnant women: A synthesis of data. Clin Infect Dis 2002; 35:S152–S172.

    Article  PubMed  Google Scholar 

  354. Lamont RF. Infection in the prediction and antibiotics in the prevention of spontaneous preterm labour and preterm birth. BJOG 2003; 110(Suppl 20):71–75.

    PubMed  Google Scholar 

  355. Leitich H, Brunbauer M, Bodner-Adler B et al. Antibiotic treatment of bacterial vaginosis in pregnancy: A meta-analysis. Am J Obstet Gynecol 2003; 188:752–58.

    Article  PubMed  Google Scholar 

  356. McDonald H, Brocklehurst P, Parsons J et al. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev 2003; CD000262.

    Google Scholar 

  357. McDonald HM, O’Loughlin JA, Vigneswaran R et al. Impact of metronidazole therapy on preterm birth in women with bacterial vaginosis flora (Gardnerella vaginalis): A randomised, placebo controlled trial. Br J Obstet Gynaecol 1997; 104:1391–97.

    PubMed  CAS  Google Scholar 

  358. McGregor JA, French JI, Parker R et al. Prevention of premature birth by screening and treatment for common genital tract infections: Results of a prospective controlled evaluation. Am J Obstet Gynecol 1995; 173:157–67.

    Article  PubMed  CAS  Google Scholar 

  359. Morales WJ, Schorr S, Albritton J. Effect of metronidazole in patients with preterm birth in preceding pregnancy and bacterial vaginosis: A placebo-controlled, double-blind study. Am J Obstet Gynecol 1994; 171:345–47.

    PubMed  CAS  Google Scholar 

  360. Macones G, Parry S, Elkousy M et al. A polymorphism in the promoter region of TNF and bacterial vaginosis: preliminary evidence of gene-environment interaction in the etiology of spontaneous preterm birth. Am J Obstet Gynecol 2003.

    Google Scholar 

  361. Roberts AK, Monzon-Bordonaba F, Van Deerlin PG et al. Association of polymorphism within the promoter of the tumor necrosis factor alpha gene with increased risk of preterm premature rupture of the fetal membranes. Am J Obstet Gynecol 1999; 180:1297–302.

    Article  PubMed  CAS  Google Scholar 

  362. Romero R, Sepulveda W, Baumann P et al. The preterm labor syndrome: Biochemical, cytologic, immunologic, pathologic, microbiologic, and clinical evidence that preterm labor is a heterogeneous disease. Am J Obstet Gynecol 1993; 168:288.

    Google Scholar 

  363. Combs CA, Katz MA, Kitzmiller JL et al. Experimental preeclampsia produced by chronic constriction of the lower aorta: Validation with longitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol 1993; 169:215–23.

    PubMed  CAS  Google Scholar 

  364. Arias F, Rodriquez L, Rayne SC et al. Maternal placental vasculopathy and infection: Two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol 1993; 168:585–91.

    PubMed  CAS  Google Scholar 

  365. Arias F. Placental insufficiency: An important cause of preterm labor and preterm premature ruptured membranes. Am J Obstet Gynecol 1990.

    Google Scholar 

  366. Gonen R, Hannah ME, Milligan JE. Does prolonged preterm premature rupture of the membranes predispose to abruptio placentae? Obstet Gynecol 1989; 74:347–50.

    PubMed  CAS  Google Scholar 

  367. Major C, Nageotte M, Lewis D. Preterm premature rupture of membranes and placental abruption: Is there an association between these pregnancy complications? Am J Obstet Gynecol 1991; 164:381.

    Google Scholar 

  368. Moretti M, Sibai BM. Maternal and perinatal outcome of expectant management of premature rupture of membranes in the midtrimester. Am J Obstet Gynecol 1988; 159:390–96.

    PubMed  CAS  Google Scholar 

  369. Vintzileos AM, Campbell WA, Nochimson DJ et al. Preterm premature rupture of the membranes: A risk factor for the development of abruptio placentae. Am J Obstet Gynecol 1987; 156:1235–38.

    PubMed  CAS  Google Scholar 

  370. Kim YM, Bujold E, Chaiworapongsa T et al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2003; 189:1063–69.

    Article  PubMed  Google Scholar 

  371. Kim YM, Chaiworapongsa T, Gomez R et al. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol 2002; 187:1137–42.

    Article  PubMed  Google Scholar 

  372. Brar HS, Medearis AL, De Vore GR et al. Maternal and fetal blood flow velocity waveforms in patients with preterm labor: Relationship to outcome. Am J Obstet Gynecol 1989; 161:1519–22.

    PubMed  CAS  Google Scholar 

  373. Brar HS, Medearis AL, DeVore GR et al. Maternal and fetal blood flow velocity waveforms in patients with preterm labor: Prediction of successful tocolysis. Am J Obstet Gynecol 1988; 159:947–50.

    PubMed  CAS  Google Scholar 

  374. Strigini FA, Lencioni G, De Luca G et al. Uterine artery velocimetry and spontaneous preterm delivery. Obstet Gynecol 1995; 85:374–77.

    Article  PubMed  CAS  Google Scholar 

  375. McMaster-Fay RA. Failure of physiologic transformation of the spiral arteries of the uteroplacental circulation in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2004; 191:1837–38.

    Article  PubMed  Google Scholar 

  376. Poisner AM. The human placental renin-angiotensin system. Front Neuroendocrinol 1998; 19:232–52.

    Article  PubMed  CAS  Google Scholar 

  377. Woods LL, Brooks VL. Role of the renin-angiotensin system in hypertension during reduced uteroplacental perfusion pressure. Am J Physiol 1989; 257:R204–R209.

    PubMed  CAS  Google Scholar 

  378. Katz M, Shapiro WB, Porush JG et al. Uterine and renal renin release after ligation of the uterine arteries in the pregnant rabbit. Am J Obstet Gynecol 1980; 136:676–78.

    PubMed  CAS  Google Scholar 

  379. Lalanne C, Mironneau C, Mironneau J et al. Contractions of rat uterine smooth muscle induced by acetylcholine and angiotensin II in Ca2+-free medium. Br J Pharmacol 1984; 81:317–26.

    PubMed  CAS  Google Scholar 

  380. Campos GA, Guerra FA, Israel EJ. Angiotensin II induced release of prostaglandins from rat uterus. Arch Biol Med Exp (Santiago) 1983; 16:43–49.

    PubMed  CAS  Google Scholar 

  381. Lockwood CJ, Krikun G, Papp C et al. The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann NY Acad Sci 1994; 734:57–79.

    Article  PubMed  CAS  Google Scholar 

  382. Elovitz MA, Saunders T, Ascher-Landsberg J et al. Effects of thrombin on myometrial contractions in vitro and in vivo. Am J Obstet Gynecol 2000; 183:799–804.

    Article  PubMed  CAS  Google Scholar 

  383. Rosen T, Schatz F, Kuczynski E et al. Thrombin-enhanced matrix metalloproteinase-1 expression: A mechanism linking placental abruption with premature rupture of the membranes. J Matern Fetal Neonatal Med 2002; 11:11–17.

    Article  PubMed  CAS  Google Scholar 

  384. Lockwood CJ, Krikun G, Aigner S et al. Effects of thrombin on steroid-modulated cultured endometrial stromal cell fibrinolytic potential. J Clin Endocrinol Metab 1996; 81:107–12.

    Article  PubMed  CAS  Google Scholar 

  385. Lijnen HR. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mosc) 2002; 67:92–98.

    PubMed  CAS  Google Scholar 

  386. Aplin JD, Campbell S, Allen TD. The extracellular matrix of human amniotic epithelium: Ultrastructure, composition and deposition. J Cell Sci 1985; 79:119–36.

    PubMed  CAS  Google Scholar 

  387. Chaiworapongsa T, Espinoza J, Yoshimatsu J et al. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2002; 11:368–73.

    Article  PubMed  CAS  Google Scholar 

  388. Gomez R, Athayde N, Pacora P et al. Increased thrombin in intrauterine inflammation. Am J Obstet Gynecol 1998; 178:S62.

    Article  Google Scholar 

  389. Rosen T, Kuczynski E, O’Neill LM et al. Plasma levels of thrombin-antithrombin complexes predict preterm premature rupture of the fetal membranes. J Matern Fetal Med 2001; 10:297–300.

    Article  PubMed  CAS  Google Scholar 

  390. Nagy S, Bush M, Stone J et al. Clinical significance of subchorionic and retroplacental hematomas detected in the first trimester of pregnancy. Obstet Gynecol 2003; 102:94–100.

    Article  PubMed  Google Scholar 

  391. Funderburk SJ, Guthrie D, Meldrum D. Outcome of pregnancies complicated by early vaginal bleeding. Br J Obstet Gynaecol 1980; 87:100–05.

    PubMed  CAS  Google Scholar 

  392. Ghezzi F, Ghidini A, Romero R et al. Doppler velocimetry of the fetal middle cerebral artery in patients with preterm labor and intact membranes. J Ultrasound Med 1995; 14:361–66.

    PubMed  CAS  Google Scholar 

  393. Signore CC, Sood AK, Richards DS. Second-trimester vaginal bleeding: Correlation of ultrasonographic findings with perinatal outcome. Am J Obstet Gynecol 1998; 178:336–40.

    Article  PubMed  CAS  Google Scholar 

  394. Williams MA, Mittendorf R, Lieberman E et al. Adverse infant outcomes associated with first-trimester vaginal bleeding. Obstet Gynecol 1991; 78:14–18.

    PubMed  CAS  Google Scholar 

  395. Gomez R, Romero R, Ghezzi F et al. Are fetal hypoxia and acidemia causes of preterm labor and delivery? Am J Obstet Gynecol 1997; 176:S115.

    Article  Google Scholar 

  396. Carroll SG, Papaioannou S, Nicolaides KH. Assessment of fetal activity and amniotic fluid volume in the prediction of intrauterine infection in preterm prelabor amniorrhexis. Am J Obstet Gynecol 1995; 172:1427–35.

    Article  PubMed  CAS  Google Scholar 

  397. Besinger R, Carlson N. The physiology of preterm labor. In: Keith L, Papiernik E, Keith D, Luke B, eds. Multiple Pregnancy: Epidemiology, Gestation and Perinatal Outcome. London: Parthenon Publishing, 1995:415.

    Google Scholar 

  398. Hill LM, Breckle R, Thomas ML et al. Polyhydramnios: Ultrasonically detected prevalence and neonatal outcome. Obstet Gynecol 1987; 69:21–25.

    PubMed  CAS  Google Scholar 

  399. Ludmir J, Samuels P, Brooks S et al. Pregnancy outcome of patients with uncorrected uterine anomalies managed in a high-risk obstetric setting. Obstet Gynecol 1990; 75:906–10.

    PubMed  CAS  Google Scholar 

  400. Phelan JP, Park YW, Ahn MO et al. Polyhydramnios and perinatal outcome. J Perinatol 1990; 10:347–50.

    PubMed  CAS  Google Scholar 

  401. Weiner CP, Heilskov J, Pelzer G et al. Normal values for human umbilical venous and amniotic fluid pressures and their alteration by fetal disease. Am J Obstet Gynecol 1989; 161:714–17.

    PubMed  CAS  Google Scholar 

  402. Manabe Y, Sagawa N, Mori T. Fetal viability does not affect the onset of stretch-induced labor and the increase in amniotic fluid prostaglandin F2 alpha and plasma prostaglandin F2 alpha metabolite levels. Prostaglandins 1992; 44:119–28.

    Article  PubMed  CAS  Google Scholar 

  403. Orhan A, Kurzel RB, Istwan NB et al. The impact of hydramnios on pregnancy outcome in twin gestations. J Perinatol 2005; 25:8–10.

    Article  PubMed  Google Scholar 

  404. Barany K, Rokolya A, Barany M. Stretch activates myosin light chain kinase in arterial smooth muscle. Biochem Biophys Res Commun 1990; 173:164–71.

    Article  PubMed  CAS  Google Scholar 

  405. Farrugia G, Holm AN, Rich A et al. A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 1999; 117:900–05.

    Article  PubMed  CAS  Google Scholar 

  406. Fisk NM, Ronderos-Dumit D, Tannirandorn Y et al. Normal amniotic pressure throughout gestation. Br J Obstet Gynaecol 1992; 99:18–22.

    PubMed  CAS  Google Scholar 

  407. Fuchs AR, Periyasamy S, Alexandrova M et al. Correlation between oxytocin receptor concentra tion and responsiveness to oxytocin in pregnant rat myometrium: Effects of ovarian steroids. Endocrinology 1983; 113:742–49.

    PubMed  CAS  Google Scholar 

  408. Holm AN, Rich A, Sarr MG et al. Whole cell current and membrane potential regulation by a human smooth muscle mechanosensitive calcium channel. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1155–G1161.

    PubMed  CAS  Google Scholar 

  409. Hu Y, Bock G, Wick G et al. Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. FASEB J 1998; 12:1135–42.

    PubMed  CAS  Google Scholar 

  410. Kloeck FK, Jung H. In vitro release of prostaglandins from the human myometrium under the influence of stretching. Am J Obstet Gynecol 1973; 115:1066–69.

    PubMed  CAS  Google Scholar 

  411. Laudanski T, Rocki W. The effects on stretching and prostaglandin F2alpha on the contractile and bioelectric activity of the uterus in rat. Acta Physiol Pol 1975; 26:385–93.

    PubMed  CAS  Google Scholar 

  412. Lee HS, Millward-Sadler SJ, Wright MO et al. Activation of Integrin-RACKl/PKCalpha signalling in human articular chondrocyte mechanotransduction. Osteoarthritis Cartilage 2002; 10:890–97.

    Article  PubMed  Google Scholar 

  413. Li C, Xu Q. Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 2000; 12:435–45.

    Article  PubMed  CAS  Google Scholar 

  414. Mitchell JA, Lye SJ. Regulation of connexin43 expression by c-fos and c-jun in myometrial cells. Cell Commun Adhes 2001; 8:299–302.

    PubMed  CAS  Google Scholar 

  415. Mitchell JA, Lye SJ. Differential expression of activator protein-1 transcription factors in pregnant rat myometrium. Biol Reprod 2002; 67:240–46.

    Article  PubMed  CAS  Google Scholar 

  416. Oldenhof AD, Shynlova OP, Liu M et al. Mitogen-activated protein kinases mediate stretch-induced c-fos mRNA expression in myometrial smooth muscle cells. Am J Physiol Cell Physiol 2002; 283:C1530–C1539.

    PubMed  CAS  Google Scholar 

  417. Ou CW, Chen ZQ, Qi S et al. Increased expression of the rat myometrial oxytocin receptor messenger ribonucleic acid during labor requires both mechanical and hormonal signals. Biol Reprod 1998; 59:1055–61.

    Article  PubMed  CAS  Google Scholar 

  418. Piersanti M, Lye SJ. Increase in messenger ribonucleic acid encoding the myometrial gap junction protein, connexin-43, requires protein synthesis and is associated with increased expression of the activator protein-1, c-fos. Endocrinology 1995; 136:3571–78.

    Article  PubMed  CAS  Google Scholar 

  419. Ravens U. Mechano-electric feedback and arrhythmias. Prog Biophys Mol Biol 2003; 82:255–66.

    Article  PubMed  Google Scholar 

  420. Shynlova OP, Oldenhof AD, Liu M et al. Regulation of c-fos expression by static stretch in rat myometrial smooth muscle cells. Am J Obstet Gynecol 2002; 186:1358–65.

    Article  PubMed  CAS  Google Scholar 

  421. Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res 2002; 91:769–75.

    Article  PubMed  CAS  Google Scholar 

  422. Sideris IG, Nicolaides KH. Amniotic fluid pressure during pregnancy. Fetal Diagn Ther 1990; 5:104–08.

    Article  PubMed  CAS  Google Scholar 

  423. Sladek SM, Westerhausen-Larson A, Roberts JM. Endogenous nitric oxide suppresses rat myome trial connexin 43 gap junction protein expression during pregnancy. Biol Reprod 1999; 61:8–13.

    Article  PubMed  CAS  Google Scholar 

  424. Speroff L, Glass RH, Kase NG. The endocrinology of pregnancy. In: Mitchell C, ed. Clinical Gynecologic Endocrinology and Infertility. Baltimore: Williams & Wilkins, 1994:251–90.

    Google Scholar 

  425. Steers WD, Broder SR, Persson K et al. Mechanical stretch increases secretion of parathyroid hormone-related protein by cultured bladder smooth muscle cells. J Urol 1998; 160:908–12.

    Article  PubMed  CAS  Google Scholar 

  426. Ticconi C, Lye SJ. Placenta and fetal membranes in human parturition and preterm delivery—a workshop report. Placenta 2002; 23(Suppl A):S149–S152.

    Article  PubMed  Google Scholar 

  427. Tzima E, del Pozo MA, Shattil SJ et al. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 2001; 20:4639–47.

    Article  PubMed  CAS  Google Scholar 

  428. Watson PA, Hannan R, Carl LL et al. Contractile activity and passive stretch regulate tubulin mRNA and protein content in cardiac myocytes. Am J Physiol 1996; 271:C684–C689.

    PubMed  CAS  Google Scholar 

  429. Wu WX, Ma XH, Yoshizato T et al. Differential expression of myometrial oxytocin receptor and prostaglandin H synthase 2, but not estrogen receptor alpha and heat shock protein 90 messenger ribonucleic acid in the gravid horn and nongravid horn in sheep during betamethasone-induced labor. Endocrinology 1999; 140:5712–18.

    Article  PubMed  CAS  Google Scholar 

  430. Barclay CG, Brennand JE, Kelly RW et al. Interleukin-8 production by the human cervix. Am J Obstet Gynecol 1993; 169:625–32.

    PubMed  CAS  Google Scholar 

  431. Calder AA. Prostaglandins and biological control of cervical function. Aust NZJ Obstet Gynaecol 1994; 34:347–51.

    CAS  Google Scholar 

  432. Chwalisz K, Benson M, Scholz P et al. Cervical ripening with the cytokines interleukin 8, interleukin 1 beta and tumour necrosis factor alpha in guinea-pigs. Hum Reprod 1994; 9:2173–81.

    PubMed  CAS  Google Scholar 

  433. Denison FC, Calder AA, Kelly RW. The action of prostaglandin E2 on the human cervix: Stimulation of interleukin 8 and inhibition of secretory leukocyte protease inhibitor. Am J Obstet Gynecol 1999; 180:614–20.

    Article  PubMed  CAS  Google Scholar 

  434. el Maradny E, Kanayama N, Halim A et al. Interleukin-8 induces cervical ripening in rabbits. Am J Obstet Gynecol 1994; 171:77–83.

    PubMed  Google Scholar 

  435. Kanayama N, Fukamizu H. Mechanical stretching increases prostaglandin E2 in cultured human amnion cells. Gynecol Obstet Invest 1989; 28:123–26.

    Article  PubMed  CAS  Google Scholar 

  436. Maehara K, Kanayama N, Maradny EE et al. Mechanical stretching induces interleukin-8 gene expression in fetal membranes: A possible role for the initiation of human parturition. Eur J Obstet Gynecol Reprod Biol 1996; 70:191–96.

    Article  PubMed  CAS  Google Scholar 

  437. Mazor M, Hershkovitz R, Ghezzi F et al. Intraamniotic infection in patients with preterm labor and twin pregnancies. Acta Obstet Gynecol Scand 1996; 75:624–27.

    Article  PubMed  CAS  Google Scholar 

  438. Millar LK, Stollberg J, DeBuque L et al. Fetal membrane distention: Determination of the intrauterine surface area and distention of the fetal membranes preterm and at term. Am J Obstet Gynecol 2000; 182:128–34.

    Article  PubMed  CAS  Google Scholar 

  439. Nemeth E, Tashima LS, Yu Z et al. Fetal membrane distention: I. Differentially expressed genes regulated by acute distention in amniotic epithelial (WISH) cells. Am J Obstet Gynecol 2000; 182:50–59.

    Article  PubMed  CAS  Google Scholar 

  440. Nemeth E, Millar LK, Bryant-Greenwood G. Fetal membrane distention: II. Differentially expressed genes regulated by acute distention in vitro. Am J Obstet Gynecol 2000; 182:60–67.

    Article  PubMed  CAS  Google Scholar 

  441. Sennstrom MK, Brauner A, Lu Y et al. Interleukin-8 is a mediator of the final cervical ripening in humans. Eur J Obstet Gynecol Reprod Biol 1997; 74:89–92.

    Article  PubMed  CAS  Google Scholar 

  442. Stjernholm YM, Sahlin L, Eriksson HA et al. Cervical ripening after treatment with prostaglandin E2 or antiprogestin (RU486). Possible mechanisms in relation to gonadal steroids. Eur J Obstet Gynecol Reprod Biol 1999; 84:83–88.

    Article  PubMed  CAS  Google Scholar 

  443. Yoon BH, Park KH, Koo JN et al. Intra-amniotic infection of twin pregnancies with preterm labor. Am J Obstet Gynecol 1997; 176:535.

    Google Scholar 

  444. Aksel S. Immunologic aspects of reproductive diseases. JAMA 1992; 268:2930–34.

    Article  PubMed  CAS  Google Scholar 

  445. Kilpatrick DC. Immune mechanisms and preeclampsia. Lancet 1987; 2:1460–61.

    Article  PubMed  CAS  Google Scholar 

  446. McLean JM. Early embryo loss. Lancet 1987; 1:1033–34.

    Article  PubMed  CAS  Google Scholar 

  447. Benirschke K, Kaufmann P. Villitis of unknown etiology. In: Benirschke K, Kaufmann P, eds. Pathology of the Human Placenta. New York: Springer-Verlag, 1995:596.

    Google Scholar 

  448. Soulillou JP, Peyronnet P, Le Mauff B et al. Prevention of rejection of kidney transplants by monoclonal antibody directed against interleukin 2. Lancet 1987; 1:1339–42.

    Article  PubMed  CAS  Google Scholar 

  449. Loke YW, King A. Immunology of human implantation: An evolutionary perspective. Hum Reprod 1996; 11:283–86.

    PubMed  CAS  Google Scholar 

  450. Cunningham DS, Tichenor Jr Jr. Decay-accelerating factor protects human trophoblast from complement-mediated attack. Clin Immunol Immunopathol 1995; 74:156–61.

    Article  PubMed  CAS  Google Scholar 

  451. Girardi G, Berman J, Redecha P et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003; 112:1644–54.

    Article  PubMed  CAS  Google Scholar 

  452. Gonzalez NC, Chairez JA, Cueto SM. Immunology of the fetal-maternal relationship. Rev Alerg Mex 1996; 43:18–22.

    PubMed  CAS  Google Scholar 

  453. Hagmann M. Embryos attacked by mom’s natural defenses. Science 2000; 287:408.

    Article  PubMed  CAS  Google Scholar 

  454. Holmes CH, Simpson KL, Okada H et al. Complement regulatory proteins at the feto-maternal interface during human placental development: Distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur J Immunol 1992; 22:1579–85.

    Article  PubMed  CAS  Google Scholar 

  455. Holmes CH, Simpson KL. Complement and pregnancy: New insights into the immunobiology of the fetomaternal relationship. Baillieres Clin Obstet Gynaecol 1992; 6:439–60.

    Article  PubMed  CAS  Google Scholar 

  456. Nishikori K, Noma J, Hirakawa S et al. The change of membrane complement regulatory protein in chorion of early pregnancy. Clin Immunol Immunopathol 1993; 69:167–74.

    Article  PubMed  CAS  Google Scholar 

  457. Pham TQ, Goluszko P, Popov V et al. Molecular cloning and characterization of Dr-II, a nonfimbrial adhesin-I-like adhesin isolated from gestational pyelonephritis-associated Escherichia coli that binds to decay-accelerating factor. Infect Immun 1997; 65:4309–18.

    PubMed  CAS  Google Scholar 

  458. Simpson KL, Jones A, Norman S et al. Expression of the complement regulatory proteins decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and CD59 in the normal human uterine cervix and in premalignant and malignant cervical disease. Am J Pathol 1997; 151:1455–67.

    PubMed  CAS  Google Scholar 

  459. Vanderpuye OA, Labarrere CA, Mclntyre JA. The complement system in human reproduction. Am J Reprod Immunol 1992; 27:145–55.

    PubMed  CAS  Google Scholar 

  460. Xu C, Mao D, Holers VM et al. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 2000; 287:498–501.

    Article  PubMed  CAS  Google Scholar 

  461. Corry DB, Kheradmand F. Induction and regulation of the IgE response. Nature 1999; 402:B18–B23.

    Article  PubMed  CAS  Google Scholar 

  462. Holgate ST. The epidemic of allergy and asthma. Nature 1999; 402:B2–B4.

    Article  PubMed  CAS  Google Scholar 

  463. Romero R, Mazor M, Avila C et al. Uterine “allergy”: A novel mechanism for preterm labor. Am J Obstet Gynecol 1991; 164:375.

    Google Scholar 

  464. Bulmer JN, Pace D, Ritson A. Immunoregulatory cells in human decidua: Morphology, immuno-histochemistry and function. Reprod Nutr Dev 1988; 28:1599–613.

    Article  PubMed  CAS  Google Scholar 

  465. Bytautiene E, Vedernikov YP, Saade GR et al. Endogenous mast cell degranulation modulates cervical contractility in the guinea pig. Am J Obstet Gynecol 2002; 186:438–45.

    Article  PubMed  Google Scholar 

  466. Bytautiene E, Romero R, Vedernikov Y et al. An allergic reaction can induce premature labor and delivery, which can be prevented by treatment with antihistaminics and chromolyn sodium. Am J Obstet Gynecol 2004; 191(4):1356–61.

    Article  PubMed  CAS  Google Scholar 

  467. Garfield RE, Bytautiene E, Vedernikov YP et al. Modulation of rat uterine contractility by mast cells and their mediators. Am J Obstet Gynecol 2000; 183:118–25.

    PubMed  CAS  Google Scholar 

  468. Holloway JA, Warner JO, Vance GH et al. Detection of house-dust-mite allergen in amniotic fluid and umbilical-cord blood. Lancet 2000; 356:1900–02.

    Article  PubMed  CAS  Google Scholar 

  469. Jones AC, Miles EA, Warner JO et al. Fetal peripheral blood mononuclear cell proliferative responses to mitogenic and allergenic stimuli during gestation. Pediatr Allergy Immunol 1996; 7:109–16.

    Article  PubMed  CAS  Google Scholar 

  470. Kammerer U, Schoppet M, McLellan AD et al. Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am J Pathol 2000; 157:159–69.

    PubMed  CAS  Google Scholar 

  471. Lachapelle MH, Miron P, Hemmings R et al. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome. J Immunol 1996; 156:4027–34.

    PubMed  CAS  Google Scholar 

  472. Padilla L, Reinicke K, Montesino H et al. Histamine content and mast cells distribution in mouse uterus: The effect of sexual hormones, gestation and labor. Cell Mol Biol 1990; 36:93–100.

    PubMed  CAS  Google Scholar 

  473. Rudolph MI, Bardisa L, Cruz MA et al. Mast cells mediators evoke contractility and potentiate each other in mouse uterine horns. Gen Pharmacol 1992; 23:833–36.

    PubMed  CAS  Google Scholar 

  474. Rudolph MI, Reinicke K, Cruz MA et al. Distribution of mast cells and the effect of their mediators on contractility in human myometrium. Br J Obstet Gynaecol 1993; 100:1125–30.

    PubMed  CAS  Google Scholar 

  475. Shingai Y, Nakagawa K, Kato T et al. Severe allergy in a pregnant woman after vaginal examination with a latex glove. Gynecol Obstet Invest 2002; 54:183–84.

    Article  PubMed  Google Scholar 

  476. Iams JD, Johnson FF, Sonek J et al. Cervical competence as a continuum: A study of ultrasonographic cervical length and obstetric performance. Am J Obstet Gynecol 1995; 172:1097–103.

    Article  PubMed  CAS  Google Scholar 

  477. Romero R, Mazor M, Gomez R. Cervix, incompetence and premature labor. Fetus 1993; 3:1.

    Google Scholar 

  478. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994; 63:451–86.

    Article  PubMed  CAS  Google Scholar 

  479. Mesiano S. Roles of estrogen and progesterone in human parturition. Front Horm Res 2001; 27:86–104.

    PubMed  CAS  Google Scholar 

  480. Alexandrova M, Soloff MS. Oxytocin receptors and parturition. I. Control of oxytocin receptor concentration in the rat myometrium at term. Endocrinology 1980; 106:730–35.

    Article  PubMed  CAS  Google Scholar 

  481. Garfleld RE, Rabideau S, Challis JR et al. Hormonal control of gap junction formation in sheep myometrium during parturition. Biol Reprod 1979; 21:999–1007.

    Article  Google Scholar 

  482. Csapo A. Progesterone block. Am J Anat 1956; 98:273–91.

    Article  PubMed  CAS  Google Scholar 

  483. Chwalisz K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery. Hum Reprod 1994; 9(Suppl 1):131–61.

    PubMed  CAS  Google Scholar 

  484. Gorodeski IG, Geier A, Lunenfeld B et al. Progesterone (P) receptor dynamics in estrogen primed normal human cervix following P injection. Fertil Steril 1987; 47:108–13.

    PubMed  CAS  Google Scholar 

  485. Stjernholm Y, Sahlin L, Akerberg S et al. Cervical ripening in humans: Potential roles of estrogen, progesterone, and insulin-like growth factor-I. Am J Obstet Gynecol 1996; 174:1065–71.

    Article  PubMed  CAS  Google Scholar 

  486. Bygdeman M, Swahn ML, Gemzell-Danielsson K et al. The use of progesterone antagonists in combination with prostaglandin for termination of pregnancy. Hum Reprod 1994; 9(Suppl 1):121–25.

    PubMed  Google Scholar 

  487. Puri CP, Patil RK, Elger WA et al. Effects of progesterone antagonist ZK 98.299 on early pregnancy and foetal outcome in bonnet monkeys. Contraception 1990; 41:197–205.

    Article  PubMed  CAS  Google Scholar 

  488. Pieber D, Allport VC, Bennett PR. Progesterone receptor isoform A inhibits isoform B-mediated transactivation in human amnion. Eur J Pharmacol 2001; 427:7–11.

    Article  PubMed  CAS  Google Scholar 

  489. Beato M, Herrlich P, Schutz G. Steroid hormone receptors: Many actors in search of a plot. Cell 1995; 83:851–57.

    Article  PubMed  CAS  Google Scholar 

  490. Kastner P, Krust A, Turcotte B et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 1990; 9:1603–14.

    PubMed  CAS  Google Scholar 

  491. Enmark E, Gustafsson JA. Oestrogen receptors-an overview. J Intern Med 1999; 246:133–38.

    Article  PubMed  CAS  Google Scholar 

  492. Hovland AR, Powell RL, Takimoto GS et al. An N-terminal inhibitory function, IF, suppresses transcription by the A-isoform but not the B-isoform of human progesterone receptors. J Biol Chem 1998; 273:5455–60.

    Article  PubMed  CAS  Google Scholar 

  493. Sartorius CA, Melville MY, Hovland AR et al. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 1994; 8:1347–60.

    Article  PubMed  CAS  Google Scholar 

  494. Bernal AL. Overview of current research in parturition. Exp Physiol 2001; 86:213–22.

    Article  PubMed  CAS  Google Scholar 

  495. Young IR. The comparative physiology of parturition in mammals. In: Smith R, ed. The enodocrinology of parturition. Basel: Reinhardt Druck, 2001:10–30.

    Chapter  Google Scholar 

  496. Westphal U, Stroupe SD, Cheng SL. Progesterone binding to serum proteins. Ann NY Acad Sci 1977; 286:10–28.

    Article  PubMed  CAS  Google Scholar 

  497. McGarrigle HH, Lachelin GC. Increasing saliva (free) oestriol to progesterone ratio in late pregnancy: A role for oestriol in initiating spontaneous labour in man? Br Med J (Clin Res Ed) 1984; 289:457–59.

    CAS  Google Scholar 

  498. Karalis K, Goodwin G, Majzoub JA. Cortisol blockade of progesterone: A possible molecular mechanism involved in the initiation of human labor. Nat Med 1996; 2:556–60.

    Article  PubMed  CAS  Google Scholar 

  499. Milewich L, Gant NF, Schwarz BE et al. Initiation of human parturition. VIII. Metabolism of progesterone by fetal membranes of early and late human gestation. Obstet Gynecol 1977; 50:45–48.

    PubMed  CAS  Google Scholar 

  500. Mitchell BF, Wong S. Changes in 17 beta,20 alpha-hydroxysteroid dehydrogenase activity supporting an increase in the estrogen/progesterone ratio of human fetal membranes at parturition. Am J Obstet Gynecol 1993; 168:1377–85.

    PubMed  CAS  Google Scholar 

  501. Pieber D, Allport VC, Hills F et al. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod 2001; 7:875–79.

    Article  PubMed  CAS  Google Scholar 

  502. Henderson D, Wilson T. Reduced binding of progesterone receptor to its nuclear response element after human labor onset. Am J Obstet Gynecol 2001; 185:579–85.

    Article  PubMed  CAS  Google Scholar 

  503. How H, Huang ZH, Zuo J et al. Myometrial estradiol and progesterone receptor changes in preterm and term pregnancies. Obstet Gynecol 1995; 86:936–40.

    Article  PubMed  CAS  Google Scholar 

  504. Rezapour M, Backstrom T, Lindblom B et al. Sex steroid receptors and human parturition. Obstet Gynecol 1997; 89:918–24.

    Article  PubMed  CAS  Google Scholar 

  505. Allport VC, Pieber D, Slater DM et al. Human labour is associated with nuclear factor-kappaB activity which mediates cyclo-oxygenase-2 expression and is involved with the ‘functional progesterone withdrawal’. Mol Hum Reprod 2001; 7:581–86.

    Article  PubMed  CAS  Google Scholar 

  506. Belt AR, Baldassare JJ, Molnar M et al. The nuclear transcription factor NF-kappaB mediates interleukin-1 beta-induced expression of cyclooxygenase-2 in human myometrial cells. Am J Obstet Gynecol 1999; 181:359–66.

    Article  PubMed  CAS  Google Scholar 

  507. Bennett P, Allport V, Loudon J et al. Prostaglandins, the fetal membranes and the cervix. Front Horm Res 2001; 27:147–64.

    PubMed  CAS  Google Scholar 

  508. Kalkhoven E, Wissink S, Van der Saag PT et al. Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem 1996; 271:6217–24.

    Article  PubMed  CAS  Google Scholar 

  509. Zingg HH, Rozen F, Chu K et al. Oxytocin and oxytocin receptor gene-expression in the uterus. Recent Progress in Hormone Research 1995; 50:255–73.

    PubMed  CAS  Google Scholar 

  510. Korach KS, Migliaccio S, Davis VL. Hormonal pharmacology of estrogens and estrogenic compounds. In: Munson P, ed. Principles in pharmacology. New York: Chapman and Hall, 1995:809–26.

    Google Scholar 

  511. Gustafsson JA. An update on estrogen receptors. Semin Perinatol 2000; 24:66–69.

    Article  PubMed  CAS  Google Scholar 

  512. Smith R, Mesiano S, McGrath S. Hormone trajectories leading to human birth. Regul Pept 2002; 108:159–64.

    Article  PubMed  CAS  Google Scholar 

  513. Young LJ, Wang Z, Donaldson R et al. Estrogen receptor alpha is essential for induction of oxytocin receptor by estrogen. Neuroreport 1998; 9:933–36.

    Article  PubMed  CAS  Google Scholar 

  514. Leavitt WW, Cobb AD, Takeda A. Progesterone-modulation of estrogen action: Rapid down regulation of nuclear acceptor sites for the estrogen receptor. Adv Exp Med Biol 1987; 230:49–78.

    PubMed  CAS  Google Scholar 

  515. Mesiano S, Chan EC, Fitter JT et al. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab 2002; 87:2924–30.

    Article  PubMed  CAS  Google Scholar 

  516. Fisher CR, Graves KH, Parlow AF et al. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cypl9 gene. Proc Natl Acad Sci USA 1998; 95:6965–70.

    Article  PubMed  CAS  Google Scholar 

  517. Lubahn DB, Moyer JS, Golding TS et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen-receptor gene. Proc Natl Acad Sci USA 1993; 90:11162–66.

    Article  PubMed  CAS  Google Scholar 

  518. Krege JH, Hodgin JB, Couse JF et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA 1998; 95:15677–82.

    Article  PubMed  CAS  Google Scholar 

  519. Daya S. Efficacy of progesterone support for pregnancy in women with recurrent miscarriage. A meta-analysis of controlled trials. Br J Obstet Gynaecol 1989; 96:275–8.

    PubMed  CAS  Google Scholar 

  520. Goldstein P, Berrier J, Rosen S et al. A meta-analysis of randomized control trials of progestational agents in pregnancy. Br J Obstet Gynaecol 1989; 96:265–74.

    PubMed  CAS  Google Scholar 

  521. ACOG Committee Opinion. Use of progesterone to reduce preterm birth. Obstet Gynecol 2003; 102:1115–16.

    Article  Google Scholar 

  522. Condon JC, Jeyasuria F, Faust JM et al. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci USA 2004; 101:4978–83.

    Article  PubMed  CAS  Google Scholar 

  523. McKeown KJ, Challis Jr G. Regulation of 15-hydroxy prostaglandin dehydrogenase by corticotrophin-releasing hormone through a calcium-dependent pathway in human chorion trophoblast cells. J Clin Endocrinol Metab 2003; 88:1737–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Romero, R., Espinoza, J., Santolaya, J., Chaiworapongsa, T., Mazor, M. (2006). Term and Preterm Parturition. In: Mor, G. (eds) Immunology of Pregnancy. Medical Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/0-387-34944-8_22

Download citation

Publish with us

Policies and ethics