Skip to main content

Formation and Role of Nitric Oxide Stores in Adaptation to Hypoxia

  • Conference paper
Oxygen Transport to Tissue XXVII

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3. References

  1. Prabhakar N. R., Fields R. D., Baker T., and Fletcher E. C., Intermittent hypoxia: cell to system, Am. J. Physiol. 281, L524–L528 (2001).

    Google Scholar 

  2. Neubauer J. A., Physiological and pathophysiological responses to intermittent hypoxia. J. Appl. Physiol. 90, 1593–1599 (2001).

    Google Scholar 

  3. F.Z. Meerson, Essentials of Adaptive Medicine: Protective Effects of Adaptation (Hypoxia Medical LTD, Moscow, 1994)

    Google Scholar 

  4. Hong Y., Suzuki S., Yatoh S., Mitzutani M., Nakajima T., Bannai S., Sato H., Soma M., Okuda Y., and Yamada N., Effect of hypoxia on nitric oxide production and its synthase gene expression in rat smooth muscle cells, Biochem. Biophys. Res. Commun. 268, 329–332 (2000).

    Article  Google Scholar 

  5. Bredt D. S., Endogenous nitric oxide synthesis: biological functions and pathophysiology, Free Rad. Res. 31, 577–596 (1999).

    Article  Google Scholar 

  6. Toporsian M., Govindaraju K., Nagi M., Eidelman D., Thibault G., and Ward M. E., Downregulation of endothelial nitric oxide synthase in rat aorta after prolonged hypoxia in vivo, Circ. Res. 86, 671–675 (2000).

    Google Scholar 

  7. Pearl J. M., Nelson D. P., Wellmann S. A., Raake J. L., Wagner C. J., McNamara J. L., and Duffy J. Y., Acute hypoxia and reoxygenation impairs exhaled nitric oxide release and pulmonary mechanics, J. Cardiovasc. Surg. 119, 931–938 (2000).

    Article  Google Scholar 

  8. Abu-Soud H. M., Ichimori K., Presta A., and Stuehr D. J., Electron transfer, oxygen binding and nitric oxide feedback inhibition in endothelial nitric-oxide synthase, Biol. Chem. 275, 17349–17357 (2000).

    Article  Google Scholar 

  9. Abu-Soud H. M., Rousseau D. L., and Stuehr D. J., Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to change in oxygen tension, J. Biol. Chem. 271, 32515–32518 (1996).

    Article  Google Scholar 

  10. Rengasamy A., and Johns R. A., Determination of Km for oxygen of nitric oxide synthase isoforms, J. Pharmacol. Exp. Ther. 276, 30–33 (1996).

    Google Scholar 

  11. Su Y., and Block E. R., Role of calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells, Am. J. Physiol. 278, L1204–L1212 (2000).

    Google Scholar 

  12. Shi Y., Baker J. E, Zhang C., Tweddell J. S., Su J., and Pritchard K. A:, Chronic hypoxia increases endothelial nitric oxide synthase generation of nitric oxide by increasing heat shock protein 90 association and serin phosphorylation, Circ. Res. 91, 300–306 (2002).

    Article  Google Scholar 

  13. Hampl V., and Herget J., Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension, Physiol. Rev. 80, 1337–1372 (2000).

    Google Scholar 

  14. Gess B., Schricker K., Pfeifer M., and Kurtz A., Acute hypoxia upregulates NOS gene expression in rats, Am. J. Physiol. 273, R905–R910 (1997).

    Google Scholar 

  15. Ferreiro C. R., Chagas A. C., Carvalho M. H., Dantas A. P., Jatene M. B., Bento de Souza L.C., and Lemos da Luz P., Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptive mechanism, Circulation 103, 2272–2276 (2001).

    Google Scholar 

  16. Manukhina E. B., Malyshev I. Yu., Smirin B. V., Mashina S. Yu., Saltykova V. A., and Vanin A. F., Production and storage of nitric oxide in adaptation to hypoxia, Nitric Oxide 3, 393–401 (1999).

    Article  Google Scholar 

  17. Malyshev I. Yu., Zenina T. A., Golubeva L. Yu., Saltykova V. A., Manukhina E. B., Mikoyan V. D., Kubrina L. N., and Vanin, A. F., NO-dependent mechanisms of adaptation to hypoxia, Nitric Oxide 3, 105–113 (1999).

    Article  Google Scholar 

  18. Manukhina E. B., Smirin B. V., Malyshev I. Yu., Stoclet J.-C., Muller B., Solodkov A. P., Shebeko V. I., and Vanin A. F., Nitric oxide storage in the cardiovascular system, Biology Bulletin, 29, 477–486 (2002).

    Google Scholar 

  19. Vanin A.F., Dinitrosyl iron complexes and S-nitrosothiols: two possible forms of nitric oxide stabilization and transport in biological systems, Biochemistry (Moscow) 63, 782–796 (1998).

    Google Scholar 

  20. A.F. Vanin, and A.L Kleschyov, in: Nitric Oxide in Transplant Rejection and Anti-Tumor Defense, edited by S. J. Lukiewicz, and J. L. Zweier (Kluwer Academic Publ., Norwell, MA, 1998) pp. 49–82.

    Google Scholar 

  21. Flitney F. W., Megson I. L., Flitney D. E., and Butler A. R., Iron-sulphur cluster nitrosyls, a novel class of nitric oxide generator: mechanism of vasodilator action on rat isolated tail artery, Br. J. Pharmacol. 107, 842–848 (1992).

    Google Scholar 

  22. Alencar J. L., Lobysheva I., Geffard M., Sarr M., Schott C., Schini-Kerth V. B., Nepveu O., Stoclet J.-C., and Muller B., Role of S-nitrosation of cysteine residues in long-lasting inhibitory effect of nitric oxide on arterial tone, Mol. Pharmacol. 63, 1148–1158 (2003).

    Article  Google Scholar 

  23. Megson I. L., Holme S. A., and Magid K. S., Selective modifiers of glutathione biosynthesis and ‘repriming’ of vascular smooth muscle photorelaxation, Br. J. Pharmacol. 130, 1575–1580 (2000).

    Article  Google Scholar 

  24. Muller B., Kleschyov A. L., and Stoclet J.-C., Evidence for N-acetylcysteine-sensitive nitric oxide storage as dinitrosyl iron complexes in lipopolysaccharide-treated rat aorta, Brit. J. Pharmacol. 119, 1281–1285 (1996).

    Google Scholar 

  25. Smirin B. V., Vanin A. F., Malyshev I. Yu., Pokidyshev D. A., and Manukhina E. B., Nitric oxide storage in blood vessels in vivo, Biull. Eksp. Biol. Med. 127, 629–632 (1999) (Russ).

    Article  Google Scholar 

  26. Semenza G. L., HIF-1 and mechanisms of hypoxia sensing, Curr. Opin. Cell Biol. 13, 167–171 (2001).

    Article  Google Scholar 

  27. Yu A. Y., Frid M. G., Shimoda L. A., Wiener C. M., Stenmark K., and Semenza G. L., Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung, Am. J. Physiol. 275, L818–L826 (1998).

    Google Scholar 

  28. Wu C.-C., Yen M.-H. Nitric oxide synthase in spontaneously hypertensive rats, Biomed. Sci. 4, 249–255 (1997).

    Article  Google Scholar 

  29. Mikoyan V. D., Kubrina L. N., Manukhina E. B., Malysheva E. V., Malyshev I. Yu., and Vanin A. F., Differences in stimulation of NO synthesis by heat shock in rats of genetically different populations, Biull. Eksp. Biol. Med. 121, 634–637 (1996) (Russ).

    Article  Google Scholar 

  30. Mashina S. Yu., Smirin B. V., Malyshev I. Yu., Lyamina N. P., Senchikhin V. N., Pokidyshev D. A., and Manukhina E. B., Correction of NO-dependent cardiovascular disorders by adaptation to hypoxia, Ross. Fiziol. Zh. Im. I. M. Sechenova 87, 110–117 (2001) (Russ).

    Google Scholar 

  31. Pshennikova M. G., Smirin B. V., Bondarenko O. N., Malyshev I. Yu., and Manukhina E. B., Nitric oxide storage in rats of different strains and its role in the antistress effect of adaptation to hypoxia, Ross. Fiziol. Zh. Im. I. M. Sechenova 86, 174–181 (2000) (Russ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Manukhina, E.B., Vanin, A.F., Markov, K.M., Malyshev, I.Y. (2006). Formation and Role of Nitric Oxide Stores in Adaptation to Hypoxia. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_6

Download citation

Publish with us

Policies and ethics