Skip to main content

Conformational Change and Regulation of Myosin Molecules

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 565))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Berg, J. S., Powell, B. C, and Cheney, R. E. (2001) A millennial myosin census, Mol. Biol. Cell 12, 780–794.

    PubMed  CAS  Google Scholar 

  • Cheney, R.E., O’Shea, M.K., Heuser, J.E., Coelho, M.V., Wolenski, J.S., Espreafico, E.M., Forscher, P., Larson, RE., and Mooseker, M.S. (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity, Cell, 75, 13–23.

    PubMed  CAS  Google Scholar 

  • Coy, D. L., Hancock, W. O., Wagenbach, M., and Howard, J. (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain, Nat. Cell Biol. 1, 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Craig, R., Smith, R., and Kendrick-Jones, J. (1983) Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules, Nature, 302, 436–439.

    Article  PubMed  CAS  Google Scholar 

  • Ebashi, S., and Ebashi, F. (1964) A NEW PROTEIN COPONENT PARTICIPATING IN THE SUPERPRECIPITATION OF MYOSIN B, J. Biochem., 55, 604–613.

    PubMed  CAS  Google Scholar 

  • Ebashi, S., and Ebashi, F. (1964) A NEW PROTEIN FACTOR PROMOTING CONTRACTION OF ACTOMYOSIN Nature, 203, 645–646.

    Article  PubMed  CAS  Google Scholar 

  • Espindola, F. S., Suter, D. M., Partata, L. B., Cao, T, Wolenski, J. S., Cheney, R. E., King, S. M., and Mooseker, M. S. (2000) The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN, Cell Motility & the Cytoskeleton 47, 269–281.

    Article  CAS  Google Scholar 

  • Gorecka, A., Aksoy, M.O., and Hartshome, D.J. (1976) The effect of phosphorylation of gizzard myosin on actin activation, Biochem. Biophys. Res. Commun., 76, 325–331.

    Article  Google Scholar 

  • Homma, K., Saito, J., Ikebe, R., and Ikebe, M. (2000) Ca(2+)-dependent regulation of the motor activity of myosin V, J. Biol. Chem., 275, 34766–34771.

    Article  PubMed  CAS  Google Scholar 

  • Ikebe, M., Onishi, H., and Watanabe, S. (1977) Phosphorylation and dephosphorylation of a light chain of the chicken gizzard myosin molecule, J. Biochem., 82, 219–302.

    Google Scholar 

  • Ikebe, M., Hinkins, S., and Hartshome, D.J. (1983) Correlation of enzymatic properties and conformation of smooth muscle myosin, Biochemistry, 22, 4580–4587.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick-Jones, J., Lehman, W., and Sent-Gyorgyi, A.G. (1970) Regulation in molluscan muscles, J. Mol. Biol., 54, 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Lymn, R.W., and Taylor, E.W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin, Biochemistry, 10, 4617–4624.

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi, K. (1991) Heavy-meromyosin-decorated actin filaments: a simple method to preserve actin filaments for rotary shadowing, J. Struct. Biol., 107, 22–28.

    Article  PubMed  CAS  Google Scholar 

  • Mermall, V., Post, P. L., and Mooseker, M. S. (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction, Science 279, 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H., and Wakabayashi, T. (1982) Electron microscopic studies of myosin molecules from chicken gizzard muscle I: the formation of the intramolecular loop in the myosin tail, J. Biochem., 92, 871–879.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Wakabayashi, T., Kamata, T., and Watanabe, S. (1983) Electron microscopic studies of myosin molecules from chicken gizzard muscle II: The effect of thiophosphorylation of the 20K-dalton light chain on the ATP-induced change in the conformation of myosin monomers, J. Biochem., 94, 1147–1154.

    PubMed  CAS  Google Scholar 

  • Philo, J. S. (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions, Anal. Biochem. 279, 151–163.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T.D., and Korn, E.D. (1971) Filaments of Amoeba proteus. II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts, J. Biol. Chem., 248, 4682–4690.

    Google Scholar 

  • Reck-Peterson, S. L., Provance, D. W., Jr., Mooseker, M. S., and Mercer, J. A. (2000) Class V myosins, Biochim. Biophys. Acta 1496, 36–51.

    Article  PubMed  CAS  Google Scholar 

  • Sellers, J. R. (2000) Myosins: a diverse superfamily, Biochim. Biophys. Acta 1496, 3–22.

    Article  PubMed  CAS  Google Scholar 

  • Siemankowaki, R.F., Wiseman, M.O., and White, H.D. (1985) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle, Proc. Natl. Acad. Sci. U.SA., 82, 658–662.

    Article  Google Scholar 

  • Slayter, H.S., and Lowey, S. (1967) Substructure of the myosin molecule as visualized by electron microscopy, Proc. Natl. Acad Sci. U.S.A., 58, 1611–1618.

    Article  PubMed  CAS  Google Scholar 

  • Sobieszek, A. (1977) Ca-linked phosphorylation of a light chain of vertebrate smooth-muscle myosin, Eur. J. Biochem., 73, 477–483.

    Article  PubMed  CAS  Google Scholar 

  • Stafford, W. F., 3rd (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile, Anal. Biochem., 203, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Stein, L.A., Chock, P.B., and Eisenberg, E. (1981) Mechanism of the actomyosin ATPase: effect of actin on the ATP hydrolysis step, Proc. Natl. Acad. Sci. U.S.A., 78, 1346–1350.

    Article  PubMed  CAS  Google Scholar 

  • Stock, M. F., Guerrero, J., Cobb, B., Eggers, C. T., Huang, T. G., Li, X., and Hackney, D. D. (1999) Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity, J. Biol. Chem., 274, 14617–14623.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S. (1978) Structure and function of chicken gizzard myosin, J. Biochem., 84, 1529–1542.

    PubMed  CAS  Google Scholar 

  • Tonomura, Y., Kitagawa, S., and Yoshimura, J. (1962) The initial phase of myosin A-adenosinetriphosphatase and the possible phosphorylation of myosin A, J. Biol. Chem., 237, 3660–3666.

    PubMed  CAS  Google Scholar 

  • Trybus, K.M., Huiatt, T.W., and Lowey, S. (1982) A bent monomeric conformation of myosin from smooth muscle, Pro.Natl.Acad. Sci. USA., 79, 6151–6155.

    Article  CAS  Google Scholar 

  • Trybus, K.M., and Lowey, S. (1984) Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength, J. Biol. Chem., 259, 8564–8571.

    PubMed  CAS  Google Scholar 

  • Trybus, K.M., Krementsova, E., Freyzon, Y. (1999) Kinetic characterization of a monomeric unconventional myosin V construct, J. Biol. Chem., 274, 27448–27456.

    Article  PubMed  CAS  Google Scholar 

  • Verhey, K. J., and Rapoport, T. A. (2001) Kinesin carries the signal, Trends in Biochemical Sciences 26, 545–550.

    Article  PubMed  CAS  Google Scholar 

  • Xie, X., Harrison, D.N., Schlichiting, J., Sweet, R.M., Kalabokis, V.N., Szent-Gyorgyi, A.G., and Cohen, C. (1994) Structure of the regulatory domain of scallop myosin at 2.8 A resolution, Nature, 368, 306–312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Ikebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Ikebe, M., Li, Xd., Mabuchi, K., Ikebe, R. (2005). Conformational Change and Regulation of Myosin Molecules. In: Sugi, H. (eds) Sliding Filament Mechanism in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 565. Springer, Boston, MA. https://doi.org/10.1007/0-387-24990-7_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-24990-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24989-6

  • Online ISBN: 978-0-387-24990-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics