Skip to main content

TIR Domain-Containing Adaptors Regulate TLR Signaling Pathways

  • Conference paper
Book cover Mechanisms of Lymphocyte Activation and Immune Regulation X

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 560))

Abstract

Against invading microorganisms, vertebrates including mammals develop innate immune systems, which are activated by microbial components possessing conserved structures called pathogen associated molecular patterns (PAMPs); including bacterial cell wall components, and viral genomic DNA and RNA. PAMPs are recognized by pattern recognition receptors mainly expressing on immune responsive cells. Toll-like receptors (TLRS) are an example of pattern recognition receptors, and TLR family members are conserved among mammals. To date, 10 and 12 TLRs have been reported in human and mouse, respectively. Almost all TLRs have been shown to recognize PAMPs; TLR2 is the receptor for peptidoglycan and lipoprotein, including bacterial lipoprotein (BLP) and mycoplasmal lipoprotein (MALP-2). Especially, BLP and MALP-2 are reportedly recognized in the functional heterodimeric association of TLR2 with TLRl and TLR6, respectively. TLR4 is involved in the recognition of a gram-negative cell wall component, lipopolysaccharide (LPS). TLR5 is a receptor for flagellin, a component of bacterial flagella. TLR3 and TLR9 are receptors for double-stranded (ds) RNA and unmethylated CpG DNA, respectively. Although the natural ligand for TLR7 is yet to be identified, the receptor has been shown to recognize imidazoquid or its derivative, R- 848. Since they are utilized in the treatment of genital warts caused by human papilomavirus, the ligand for TLR7 seems to be a component of viruses. Thus, accumulating evidence clearly demonstrates that TLRs serve as pattern recognition receptors to detect invading microbes (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Janeway, C.A. Jr., & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Yamamoto, M., Takeda, K. & Akira, S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol. 40, 861–868 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. Alexopoulou, L. et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1-and TLR2-deficient mice. Nat. Med. 8, 878–884 (2002).

    PubMed  CAS  Google Scholar 

  6. Hoshino, K. et al. Toll-like receptor 4(TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    PubMed  CAS  Google Scholar 

  7. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Lord, K.A., Hoffman-Liebermann, B., & Liebermann, D.A. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5, 1095–1097 (1990).

    PubMed  CAS  Google Scholar 

  13. Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Muzio, M. Ni, J., Feng, P., & Dixit, V.M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 278:1612–1615 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Kanakaraj, P. et al. Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J Exp Med. 187:2073–2079 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. Thomas, J.A. et al. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J Immunol. 163:978–84 (1999).

    PubMed  CAS  Google Scholar 

  17. Suzuki, N. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 416:750–756 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1-and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 192:595–600 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. Schnare, M. et al. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol. 10:1139–1142 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001).

    PubMed  CAS  Google Scholar 

  24. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. Kaisho, T., Takeuchi, O., Kawai, T., Hoshino, K. & Akira, S. Endotoxin-induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166, 5688–5694 (2001).

    PubMed  CAS  Google Scholar 

  26. Horng, T., Barton, G.M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835–841 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. Fitzgerald, K.A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. Hong, T., Barton, G.M., Flavell, R.A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    Article  CAS  Google Scholar 

  30. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    PubMed  CAS  Google Scholar 

  31. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nat. Immunol. 4, 161–167. (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-Like Receptor signaling pathway. Science 301, 640–643 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. O’Neill, L.A., Fitzgerald, K.A. & Bowie, A.G. The Toll-IL-1 receptor adaptor family grows to five members. Trends. Immunol. 24, 286–290 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol. 4:1144–1150 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Fitzgerald, K. A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J Exp Med. 198:1043–1055 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Oshiumi H, et al. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-ß. J Biol Chem. 278:49751–49762 (2003).

    Article  PubMed  Google Scholar 

  38. Mink, M., Fogelgren, B., Olszewski, K., Maroy, P. & Csiszar, K. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/betacatenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics 74, 234–244 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. McWhirter, S.M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA. Dec 16 (2003).

    Google Scholar 

  42. Grosshans, J., Schnorrer, F. & Nusslein-Volhard, C. Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech. Dev. 81, 127–138 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. iang, Z. et al. Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J. Biol. Chem. 278, 10952–10956 (2003).

    Article  CAS  Google Scholar 

  44. Yu, K.Y. et al. Cutting edge: mouse pellino-2 modulates IL-1 and lipopolysaccharide signaling. J. Immunol. 169, 4075–4078 (2002).

    PubMed  CAS  Google Scholar 

  45. Jensen, L.E. & Whitehead, A.S. Pellino2 activates the mitogen activated protein kinase pathway. FEBS Lett. 545, 199–202 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. Jensen, L.E. & Whitehead, A.S. Pellino3, a novel member of the Pellino protein family, promotes activation of c-Jun and Elk-1 and may act as a scaffolding protein. J. Immunol. 171, 1500–1506 (2003).

    PubMed  CAS  Google Scholar 

  47. Lomaga, M.A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13:1015–1024 (1999).

    PubMed  CAS  Google Scholar 

  48. Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 4:353–362 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 171:4304–4310 (2003).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Yamamoto, M., Akira, S. (2005). TIR Domain-Containing Adaptors Regulate TLR Signaling Pathways. In: Gupta, S., Paul, W.E., Steinman, R. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation X. Advances in Experimental Medicine and Biology, vol 560. Springer, Boston, MA. https://doi.org/10.1007/0-387-24180-9_1

Download citation

Publish with us

Policies and ethics