Skip to main content

Chemistry of Reactive Oxygen Species

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, L. C., Fábián, I., Suzuki, K., and Gordon, G., 1992, Hypochlorous acid decomposition in the pH 5–8 region, Inorg. Chem. 31:3534–3541.

    Article  CAS  Google Scholar 

  • Alfassi, Z. B. (ed), 1997, Peroxyl Radicals, Wiley, New York.

    Google Scholar 

  • Alfassi, Z. B., Huie, R. E., and Neta, P., 1986, Substituent effects on rates of one-electron phenols by the radical ClO2, NO2, and SO 3 , J. Phys. Chem. 90:4156–4158.

    CAS  Google Scholar 

  • Alfassi, Z. B., Mosseri, S., and Neta, P., 1987, Halogenated alkylperoxyl radicals as oxidants: Effects of solvents and substituents on rates of electron transfer, J. Phys. Chem. 91:3383–3385.

    CAS  Google Scholar 

  • Alfassi, Z. B., Huie, R. E., Neta, P., and Shoute, L. C. T., 1990, Temperature dependence of the rate constants for reactions of inorganic radicals with organic reductants, J. Phys. Chem. 94:8800–8805.

    Article  CAS  Google Scholar 

  • Alfassi, Z. B., Huie, R. E., Kumar, M., and Neta, P., 1992, Temperature dependence on the rate constants for oxidation of organic compounds by peroxyl radicals in aqueous alcohol solutions, J. Phys. Chem. 96:767–770.

    Article  CAS  Google Scholar 

  • Alfassi, Z. B., Huie, R. E., and Neta, P., 1993a, Rate constants for reactions of perhaloalkylperoxyl radicals with alkenes, J. Phys. Chem. 97:6835–6838.

    CAS  Google Scholar 

  • Alfassi, Z. B., Huie, R. E., and Neta, P., 1993b, Solvent effects on the rate constants for reaction of trichloromethylperoxyl radicals with organic reductants, J. Phys. Chem. 97:7253–7257.

    CAS  Google Scholar 

  • Alfassi, Z. B., Huie, R. E., and Neta, P., 1997, Kinetics studies of organic peroxyl radicals in aqueous solutions and mixed solvents, in Peroxyl Radicals (Z. B. Alfassi, ed.), pp. 235–281, Wiley, New York.

    Google Scholar 

  • Allen, R. C., 1994, Role of oxygen in phagocyte microbicidal action, Environ. Health Perspect. 102:201–208.

    CAS  PubMed  Google Scholar 

  • Amar, C., Vilkas, E., and Foos, J., 1982, Catalytic activity studies of some copper(II)-histidine-containing dipeptide complexes on aqueous superoxide ion dismutation, J. Inorg. Biochem. 17:313–323.

    Article  CAS  Google Scholar 

  • Antelo, J. M., Arce, F., Castro, M. C., Crugeiras, J., Perez-Moure, J. C., and Rodriguez, P., 1995a, Kinetics of the formation, decomposition, and disproportionation reactions of N-chlorobutylamines, Int. J. Chem. Kinet. 27:703–717.

    CAS  Google Scholar 

  • Antelo, J. M., Arce, F., and Parajo, M., 1995b, Kinetic study of the formation of N-chloramines, Int. J. Chem. Kinet. 27:637–647.

    CAS  Google Scholar 

  • Arudi, R. L., Bielski, B. H., and Allen, A. O., 1984, Search for singlet oxygen luminescence in the disproportionation of HO2/O2. Photochem. Photobiol. 39:703–706.

    CAS  PubMed  Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J., 1992, Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV, J. Chem. Phys. Ref. Data 21:1125–1568.

    CAS  Google Scholar 

  • Aubry, J.-M., Rigaudy, J., Ferrandini, C., and Pucheault, J., 1981, Search for singlet oxygen in the disproportionation of superoxide anion, J. Am. Chem. Soc. 103:4965–4966.

    Article  CAS  Google Scholar 

  • Aubry, J.-M., Mandard-Cazin, B., Rougee, M., and Bensasson, R. V., 1995, Kinetic studies of singlet oxygen [4 + 2]-cycloadditions with cyclic 1,3-dienes in 28 solvents, J. Am. Chem. Soc. 117:9159–9164.

    Article  CAS  Google Scholar 

  • Awad, H. H., and Stanbury. D. M., 1993, Autoxidation of NO in aqueous solution, Int J. Chem. Kinet. 25:375–381.

    Article  CAS  Google Scholar 

  • Babior, B. M., 1994, Activation of the respiratory burst oxidase, Environ. Health Perspect. 102:53–56.

    CAS  PubMed  Google Scholar 

  • Baignee, A., Howard, J. A., Scaino, J. C., and Stewart, L. C., 1983, Absolute rate constants for reactions of cumyloxy in solution, J. Am. Chem. Soc. 105:6120–6123.

    Article  CAS  Google Scholar 

  • Bakac, A., and Espenson, J. H., 1983, Kinetics of the oxidation of chromium(II) by hydrogen peroxide: Flash-photolytic and stopped-flow studies based on radical-trapping reactions, Inorg. Chem. 22:779–783.

    CAS  Google Scholar 

  • Barlow, G. E., Bisby, R. H., and Cundall, R. B., 1979, Does disproportionation of superoxide produce singlet oxygen? Radiat. Phys. Chem. 13:73–75.

    CAS  Google Scholar 

  • Bartlett, D., Church, D. F, Bounds, P. L., and Koppenol, W. H., 1995, The kinetics of the oxidation of l-ascorbic acid by peroxynitrite, Free Radical Biol. Med. 18:85–91.

    Article  CAS  Google Scholar 

  • Bartlett, P. D., and Landis, M. E., 1979, The 1,2-dioxetanes, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 243–286, Academic Press, New York.

    Google Scholar 

  • Barton, A. F. M., 1983, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implication for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87:1620–1624.

    CAS  PubMed  Google Scholar 

  • Beckman, J. S., Ischiropoulos, H., Zhu, L., Woerd, M. v. d., Smith, C., Chen, J., Harrison, J., Martin, J. C., and Tsai, M., 1992, Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite, Arch. Biochem. Biophys. 298:438–445.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, J. E., 1987, A kinetic study of the self-reaction of prop-2-ylperoxyl radicals in solution using ultraviolet absorption spectroscopy, J. Chem. Soc. Faraday Trans. 1 83:1805–1813.

    CAS  Google Scholar 

  • Bennett, J. E., Brunton, G., Smith, J. R. L., Salmon, T. M. F., and Waddington, D. J., 1987a, Reactions of alkylperoxyl radicals in solution. A kinetic and product study of self-reactions of 2-propylperoxyl radicals between 253 and 323 K, J. Chem. Soc. Faraday Trans. 1 83:2433–2447.

    CAS  Google Scholar 

  • Bennett, J. E., Brunton, G., Smith, J. R. L., Salmon, T. M. F., and Waddington, D. J., 1987b, Reactions of alkylperoxyl radicals in solution. A kinetic study of self-reactions of 2-propylperoxyl radicals between 135 and 300 K, J. Chem. Soc. Faraday Trans. 1 83:2421–2432.

    CAS  Google Scholar 

  • Biaglow, J. K., Held, K. D., Manevich, Y., Tuttle, S., Kachur, A., and Uckun, F., 1996, Role of guanosine triphosphate in ferric ion-linked fenton chemistry, Radiat. Res. 145:554–562.

    CAS  PubMed  Google Scholar 

  • Bielski, B. H. J., 1983, Evaluation of the reactivities of HO2/O2 with compounds of biological interest, in Oxy Radicals and their Scavenger Systems (G. Cohen and R. A. Greenwald, eds.), pp. 1–7, Elsevier, Amsterdam.

    Google Scholar 

  • Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B., 1985, Reactivity of HO2/O2 radicals in aqueous solution, J. Phys. Chem. Ref. Data 14:1041–1100.

    CAS  Google Scholar 

  • Blough, N. V., and Zafiriou, O. C., 1985, Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution, Inorg. Chem. 24:3500–3504.

    Article  Google Scholar 

  • Bogan, D. J., Celii, F., Sheinson, R. S., and Coveleskie, R. A., 1984, Observation of O2(b1 +g →X3 g ) chemiluminescence from the self-reaction of isopropylperoxy radicals, J. Photochem. 25:409–417.

    Article  CAS  Google Scholar 

  • Böhm, F., Edge, R., Land, E. J., McGarvey, D. J., and Truscott, T. G., 1997, Carotenoids enhance vitamin E antioxidant efficiency, J. Am. Chem. Soc: 119:621–622.

    Google Scholar 

  • Bothe, E., and Schulte-Frohlinde, D., 1978, The bimolecular decay of α-hydroxymethylkperoxyl radicals in aqueous solution, Z. Naturforsch. 33B:786–788.

    CAS  Google Scholar 

  • Brault, D., 1985, Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: Radical processes involving iron porphyrins, Environ. Health Perspect. 64:53–60.

    CAS  PubMed  Google Scholar 

  • Brault, D., Neta, P., and Patterson, L. K., 1985, The lipid peroxidation model for halogenated hydrocarbon toxicity. Kinetics of peroxyl radical processes involving fatty acids and Fe(III)-porphyrins, Chem.-Biol. Interact. 54:289–297.

    Article  CAS  PubMed  Google Scholar 

  • Brigelius, R., Spoettl, R., Bors, W., Lengfelder, E., Saran, M., and Weser, U., 1974, Superoxide dismutase activity of low molecular weight Cu2+ chelates studied by pulse radiolysis. FEBS. Lett. 47:72–75.

    Article  CAS  PubMed  Google Scholar 

  • Buettner, G. R., and Jurkiewicz, B. A., 1996, Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res. 145:532–541.

    CAS  PubMed  Google Scholar 

  • Bull, C., McClune, G. J., and Fee, J. A., 1983, The mechanisms of Fe-EDTA catalyzed superoxide dismutation, J. Am. Chem. Soc. 105:5290–5300.

    Article  CAS  Google Scholar 

  • Butler, J., and Halliwell, B., 1982, Reaction of iron-EDTA chelates with the superoxide radical. Arch. Biochem. Biophys. 218:174–178.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution, J. Phys. Chem. Ref. Data 17:513–886.

    CAS  Google Scholar 

  • Buxton, G. V., Mulazzani, Q. G., and Ross, A. B., 1995, Critical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solution. J. Phys. Chem. Ref. Data 24(3):1055–1349.

    CAS  Google Scholar 

  • Cabelli, D. E., 1997, The reactions of HO2/O 2 radicals in aqueous solution. in Peroxyl Radicals (Z. B. Alfassi, ed.), pp. 407–437, Wiley, New York.

    Google Scholar 

  • Cabelli, D. E., and Bielski, B. H. J., 1983, Kinetics and mechanism for the oxidation of ascorbic acid by radicals. A pulsed radiolysis and stopped-flow photolysis study. J. Phys. Chem. 87:1809–1812.

    Article  CAS  Google Scholar 

  • Candeias, L. P., 1993, Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett. 333:151–153.

    Article  CAS  PubMed  Google Scholar 

  • Candeias, L. P., Stratford, M. R. L., and Wardman, P., 1994, Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron (II) complex. Free Radical Res. 20:241–249.

    CAS  Google Scholar 

  • Carr, A. C., van der Berg, J. J. M., and Winterbourn, C. C., 1996, Chlorination of cholesterol in cell membranes by hypochlorous acid. Arch. Biochem. Biophys. 332:63–69.

    Article  CAS  PubMed  Google Scholar 

  • Castro, L., Alvarez, M. N., and Radi, R., 1996, Modulatory role of nitric oxide on superoxide-dependent luminol chemiluminescence. Arch. Biochem. Biophys. 333:179–188.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabartty, S. K., 1978, Alkaline hypohalite oxidations, in Oxidation in Organic Chemistry (W. S. Trahanovsky, ed.), pp. 343–370, Academic Press, New York.

    Google Scholar 

  • Cheeseman, K. H., Albano, E. F., Tomasi, A., and Slater, T. F., 1985, Biochemical studies on the metabolic activation of halogenated alkanes. Environ. Health Perspect. 64:85–101.

    CAS  PubMed  Google Scholar 

  • Chen, S. N., and Hoffman, M. Z., 1973, Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution. Radiat. Res. 56:40–47.

    CAS  PubMed  Google Scholar 

  • Chen, S. N., and Hoffman, M. Z., 1975, Effect of pH on the reactivity of the carbonate radical in aqueous solution. Radiat. Res. 62:18–27.

    CAS  PubMed  Google Scholar 

  • Clifton, C. L., and Huie, R. E., 1993, Rate constants for some hydrogen abstraction reactions of the carbonate radical. Int. J. Chem. Kinet. 25:199–203.

    Article  CAS  Google Scholar 

  • Cosgrove, J. P., Church, D. F., and Pryor, W. A., 1987, The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299–304.

    CAS  PubMed  Google Scholar 

  • Crow, J. P., Spruell, C., Chen, J., Gunn, C., Ischiropoulos, H., Tsai, M., Smith, C. D., Radi, R., Koppenol, W.H., and Beckman, J. S., 1994, On the pH-dependent yield of hydroxyl radical products from peroxynitrite, Free Radical Biol. Med. 16:331–338.

    Article  CAS  Google Scholar 

  • Csànyi, L., and Galbàcs, Z. M., 1985, Carbon dioxide-mediated decomposition of hydrogen peroxide in alkaline solutions. J. Chem. Soc. Faraday Trans. I 81:113–116.

    Google Scholar 

  • Denicola, A., Freeman, B. A., Trujillo, M., and Radi, R., 1996, Peroxynitrite reaction with carbon dioxide/bicarbonate: Kineticsandinfluenceonperoxynitrite-mediatedoxidations. Arch. Biochem. Biophys. 333:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Denisov, E. T., and Denisova, T. G., 1993, Kinetic parameters of the reactions RO2+RH in the framework of the parabolic model of transition state. Kinet. Catal. 34:173–179.

    Google Scholar 

  • Dikalov, S., Khramtsov, V, and Zimmer, G., 1996, Determination of rate constants of the reactions of thiols with superoxide radical by electronparamagnetic resonance: Critical remarks on spectrophotometric approaches. Arch. Biochem. Biophys. 326:207–218.

    Article  CAS  PubMed  Google Scholar 

  • Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K., and Sies, H., 1994, Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett. 355:287–289.

    PubMed  Google Scholar 

  • Dohrmann, J., and Bergmann, B., 1995, Equilibria and rates of redox reactions involving the 2-tert-butyl-l,4-benzosemiquinone radical in aqueous solution: An investigation by potentiometry, ESR, and pulse radiolysis. J. Phys. Chem. 99:1218–1227.

    Article  CAS  Google Scholar 

  • Eberhardt, M. K., and Colina, R., 1988, The Reaction of OH radicals with dimethyl sulfoxide. A comparative study of Fenton’s reagent and the radiolysis of aqueous dimethyl sulfoxide solutions. J. Org. Chem. 53:1071–1074.

    CAS  Google Scholar 

  • Edwards, J. O., and Plumb, R. C., 1994, The chemistry of peroxonitrites, in Progress in Inorganic Chemistry (K. D. Karlin, ed.), pp. 599–635, Wiley, New York.

    Google Scholar 

  • Eguchi, W., Tanigaki, M., Mutoh, K., and Tsuchiya, H., 1989, Kagaku Kogaku Ronbunshu d15:1115.

    Google Scholar 

  • Elango, T. P., Ramakrishnan, V., Vancheesan, S., and Kuriacose, J. C., 1984, Reaction of the carbonate radical with substituted anilines. Proc. Indian Acad. Sci. (Chem. Sci.) 93:47–52.

    CAS  Google Scholar 

  • Elliot, A. J., and Simsons, A. S., 1984, Reactions of NO2 and nitrite ion with organic radicals. Can. J. Chem. 62:1831–1834.

    CAS  Google Scholar 

  • Erben-Russ, M., Michel, C., Bors, W., and Saran, M., 1987, Absolute rate constants of alkoxyl radical reactions in aqueous solution. J. Phys. Chem. 91:2362–2365.

    Article  CAS  Google Scholar 

  • Eriksen, T. E., Lind, J., and Merényi, G., 1985, On the acid-base equilibrium of the carbonate radical. Radiat. Phys. Chem. 26:197–199.

    CAS  Google Scholar 

  • Folkes, L. K., Candeias, L. P., and Wardman, P., 1995, Kinetics and mechanisms of hypochlorous acid reactions, Arch. Biochem. Biophys. 323:120–126.

    Article  CAS  PubMed  Google Scholar 

  • Fontana, F., Minisci, F., Vismara, E., Faraci, G., and Platone, E., 1989, Chlorination by hypochlorous acid. Free-radical versus electrophilic reactions, in Free Radicals in Synthesis and Biology (F. Minisci, ed.), pp. 269–282, Kluwer, Dordrecht.

    Google Scholar 

  • Foote, C. S., Shook, F. C., and Abakerh, R. A., 1980, Chemistry of superoxide ion. 4. Singlet oxygen is not a major product of dismutation. J. Am. Chem. Soc. 102:2503–2504.

    Article  CAS  Google Scholar 

  • Forni, L. G., Packer, J. E., Slater, T. F., and Willson, R. L., 1983, Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: A pulse radiolysis study. Chem.-Biol. Interact. 45:171–177.

    Article  CAS  PubMed  Google Scholar 

  • Forni, L. G., Mora-Arellano, V. O., Packer, J. E., and Willson, R. L., 1986, Nitrogen dioxide and related free radicals: electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate. J. Chem. Soc. Perkin Trans. 2 1986:1–6.

    Google Scholar 

  • Former de Violet, P., Veyret, B., Vincendeau, P., and Caristan, A., 1984, Chemiluminescence induced by oxidation of tryptophan by singlet oxygen and by hypochlorous acid. Implications in the luminescence emitted in phagocytosis. Photochem. Photobiol. 39:707–712.

    Google Scholar 

  • Gilbert, B. C., Holmes, R. G. G., Laue, H. A. H., and Norman, R. O. C., 1976, Electron spin resonance studies. Part L. Reactions of alkoxyl radicals generated from alkyl hydroperoxides and titanium (III) ion in aqueous solution. J. Chem. Soc. Perkin Trans. 2 1976:1047–1052.

    Google Scholar 

  • Gilbert, B. C., Marshall, P. D. R., Norman, R. O. C., Pineda, N., and Williams, P. S., 1977, Electron spin resonance studies. Part LII. Reactions of secondary alkoxyl radicals. J. Chem. Res. 1977:101–113.

    Google Scholar 

  • Gilbert, B. C., Marshall, P. D. R., Norman, R. O. C., Pineda, N., and Williams, P. S., 1981, Electron spin resonance studies. Part 61. The generation and reactions of the t-butoxyl radical in aqueous solution. J. Chem. Soc. Perkin Trans. 2 1981:1392–1400.

    Google Scholar 

  • Goldstein, S., and Czapski, G., 1995a, Direct and indirect oxidations by peroxynitrite. Inorg. Chem. 34:4041–4048.

    Article  CAS  Google Scholar 

  • Goldstein, S., and Czapski, G., 1995b, Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants. The nature of the oxidizing intermediates. J. Am. Chem. Soc. 117:12078–12084.

    Article  CAS  Google Scholar 

  • Goldstein, S., and Czapski, G., 1995c, The reaction of NO with O -2 and HO2: A pulse radiolysis study. Free Radical Biol. Med. 19:505–510.

    Article  CAS  Google Scholar 

  • Goldstein, S., Czapski, G., and Meyerstein, D., 1990, A mechanistic study of the copper(II)-peptide-catalyzed superoxide dismutation. A pulse radiolysis study. J. Am. Chem. Soc. 112:6489–6492.

    CAS  Google Scholar 

  • Goldstein, S., Meyerstein, D., and Czapski, G., 1993, The Fenton reagents. Free Rad. Biol. Med. 15:435–445.

    Article  CAS  PubMed  Google Scholar 

  • Gollnick, K., and Kuhn, H. J., 1979, Ene-reactions with singlet oxygen, in Singlet Oxygen (H. H. Wasserman, and R. W. Murray, eds.), pp. 287-427, Academic Press, New York.

    Google Scholar 

  • Gow, A., Duran, D., Thom, S. R., and Ischiropoulos, H., 1996, Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch. Biochem. Biophys. 333:42–48.

    Article  CAS  PubMed  Google Scholar 

  • Gray, D., Lissi, E., and Heicklen, J., 1972, The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide, J. Phys. Chem. 76:1919.

    CAS  Google Scholar 

  • Groves, J. T., and Maria, S. S., 1995, Peroxynitrite-induced DNA strand scission mediated by a manganese porphyrin, J. Am. Chem. Soc. 117:9578–9579.

    CAS  Google Scholar 

  • Guajardo, R. J., and Mascharak, P. K., 1995, Lipid peroxidation by synthetic analogues of iron bleomycin: Possible role of a low-spin hydroperoxo iron(III) intermediate in lipid peroxidation induced by bleomycin. Inorg. Chem. 34:802–808.

    Article  CAS  Google Scholar 

  • Gunther, M. R., Hanna, P. M., Mason, R. P., and Cohen, M. S., 1995, Hydroxyl radical formation from cuprous ion and hydrogen peroxide: A spin-trapping study, Arch. Biochem. Biophys. 316:515–522.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., and Cross, C. E., 1994, Oxygen-derived species: Their relation to human disease and environmental stress, Environ. Health Perspect. 102:5–12.

    CAS  PubMed  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1989, Free Radicals in Biology and Medicine, Oxford Univeristy Press (Clarendon), London.

    Google Scholar 

  • Held, A. M., Halko, D. J., and Hurst, J. K., 1978, Mechanisms of chlorine oxidation of hydrogen peroxide, J. Am. Chem. Soc. 100:5732–5740.

    Article  CAS  Google Scholar 

  • Held, K. D., Sylvester, F. C., Hopcia, K. L., and Biaglow, J. E., 1996, Role of Fenton chemistry in thiol-induced toxicity and apoptosis, Radiat. Res. 145:542–553.

    CAS  PubMed  Google Scholar 

  • Hildebrand, J. H., Prausnitz, J. M., and Scott, R. L., 1970, Regular and Related Solutions, Van Nostrand-Reinhold, Princeton, NJ.

    Google Scholar 

  • Hogg, N., Darley-Usmar, V. M., Eilson, M. T., and Moncada, S., 1992, Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide, Biochem. J. 281:419–424.

    CAS  PubMed  Google Scholar 

  • Hogg, N., Joseph, J., and Kalyanaraman, B., 1994, The oxidation ofα-tocopherol and Trolox by peroxynitrite, Arch. Biochem. Biophys. 314:153–158.

    CAS  PubMed  Google Scholar 

  • Hogg, N., Singh, R. J., Goss, S. P. A., and Kalyanaraman, B., 1996, The reaction between nitric oxide andα-tocopherol A reappraisal, Biochem. Biophys. Res. Commun. 224:696–702.

    Article  CAS  PubMed  Google Scholar 

  • Houk, K. N., Condroski, K. R., and Pryor, W. A., 1996, Radical and concerted mechanisms in oxidations of amines, sulfides, and alkenes by peroxynitrite, peroxynitrous acid, and the peroxynitrite-CO2 adduct: Density functional theory transition state structures and energetics, J. Am. Chem. Soc. 118:13002–13006.

    Article  CAS  Google Scholar 

  • Howard, J. A., 1984, The application of kinetic electron spin resonance spectroscopy to some reactions of t-butylperoxide in solution, Rev. Chem. Intermed. 5:1–19.

    Google Scholar 

  • Howard, J. A., and Ingold, K. U., 1968, The self-reaction of sec-butylperoxyradicals. Confirmation of the Russell mechanism, J. Am. Chem. Soc. 90:1056–1058.

    CAS  Google Scholar 

  • Howard, J. A., and Scaiano, J. C., 1984, Radical reaction rates in liquid. Oxyl, peroxyl, and related radicals, in Landolt-Börnstein. Numerical Data on Functional Relationships in Science and Technology. New Series, Group II; Atomic and Molecular Physics (K.-H. Hellwege and O. Madelung, eds.), Vol. 13, Part D, Springer-Verlag, Berlin (see also update in Vol. 18, Part D2, 1997).

    Google Scholar 

  • Hughes, M. N., and Nicklin, H. G., 1968, The chemistry of pernitrites. Part 1. Kinetics of decomposition of pernitrous acid, J. Chem. Soc. A 450–452.

    Google Scholar 

  • Hughes, M. N., Nicklin, H. G., and Sackrule, W. A. C., 1971, The chemistry of peroxonitrites. Part III. The reaction of peroxonitrite with nucleophiles in alkali, and other nitrite producing reactions, J. Chem. Soc. A 1971:3722–3725.

    Google Scholar 

  • Huie, R. E., and Herron, J. T., 1973, Kinetics of the reactions of singlet molecular oxygen (O21Δg) with organic compounds in the gas phase, Int. J. Chem. Kinet. 5:197–211.

    Article  CAS  Google Scholar 

  • Huie, R. E., and Padmaja, S., 1993, The reaction of NO with superoxide, Free Radical Res. Commun. 18:195–199.

    CAS  Google Scholar 

  • Huie, R. E., Alfassi, Z. B., and Neta, P., 1986, Rate constants for one-electron oxidation by methylperoxyl radicals in aqueous solutions, Int. J. Chem. Kinet. 18:1185–1191.

    Article  CAS  Google Scholar 

  • Huie, R. E., Clifton, C. L., and Neta, P., 1991a, Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions, Radiat. Phys. Chem. 38:477–481.

    CAS  Google Scholar 

  • Huie, R. E., Shoute, L. C. T., and Neta, P., 1991b, Temperature dependence of the rate constants for reactions of the carbonate radical with organic and inorganic reductants, Int. J. Chem. Kinet. 23:541–552.

    Article  CAS  Google Scholar 

  • Ignarro, L. J., Fukuto, J. M., Griscavage, J. M., and Rogers, N. E., 1993, Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine, Proc. Natl. Acad. Sci. USA 90:8103–8107.

    CAS  PubMed  Google Scholar 

  • Ilan, Y., Rabani, J., and Fridovich, I., 1981, Superoxide dismuting activity of an iron porphyrin, Inorg. Nucl. Chem. Lett. 17:93–96.

    Article  CAS  Google Scholar 

  • Itoh, S., Nagaoka, S.-I., Mukai, K., Ikesu, S., and Kaneko, Y., 1994, Kinetic study of quenching reactions of singlet oxygen and scavenging reactions of free radicals byα-,β-,τ-, andδ-tocopheramines in ethanol solution and micellar dispersion, Lipids 29:799–802.

    CAS  PubMed  Google Scholar 

  • Johnson, G. R. A., Nazhat, N. B., and Saadalla-Nazhat, R. A., 1988, Reaction of the aquacopper(I) ion with hydrogen peroxide, J. Chem. Soc. Faraday Trans. 184:501–510.

    Google Scholar 

  • Jonsson, M., 1996, Thermochemical properties of peroxides and peroxyl radicals, J. Phys. Chem. 100:6814–6818.

    CAS  Google Scholar 

  • Kanofsky, J. R., 1986a, Singlet oxygen production in superoxide ion-halocarbon systems, J. Am. Chem. Soc. 108:2977–2979.

    Article  CAS  Google Scholar 

  • Kanofsky, J. R., 1986b, Singlet oxygen production from the reactions of alkylperoxy radicals. Evidence from 1268-nm chemiluminescence, J. Org. Chem. 51:3386–3388.

    Article  CAS  Google Scholar 

  • Kasha, M., and Khan, A. U., 1970, The physics, chemistry, and biology of singlet molecular oxygen, in International Conference on Singlet Molecular Oxygen and its Role in Environmental Sciences (A. M. Trozzolo, ed.), pp. 5–23, Annals of the New York Academy of Sciences, New York.

    Google Scholar 

  • Kawanishi, S., Inoue, S., and Yamamoto, K., 1994, Active oxygen species in DNA damage induced by carcinogenic metal compounds, Environ. Health Perspect. 102:17–20.

    CAS  PubMed  Google Scholar 

  • Kearns, D. R., 1979, Solvent and solvent isotope effects on the lifetime of singlet oxygen, in Singlet Oxygen (H. H. Wasserman, and R. W. Murray, eds.), pp. 115–137, Academic Press, New York.

    Google Scholar 

  • Khan, A. U., 1995, Quantitative generation of singlet (1Δg) oxygen from acidified aqueous peroxynitrite produced by the reaction of nitric oxide and superoxide anion, J. Biolumin. Chemilumin. 10:329–333.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. U., and Kasha, M., 1994a, Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: Application to studies on the deleterious health effects of chlorinated drinking water, Proc. Natl. Acad. Sci. USA 91:12362–12364.

    CAS  PubMed  Google Scholar 

  • Khan, A. U., and Kasha, M., 1994b, Singlet molecular oxygen in the Haber-Weiss reaction, Proc. Natl. Acad. Sci.USA 91:12365–12367.

    CAS  PubMed  Google Scholar 

  • Kharitonov, V. G., Sundquist, A. R., and Sharma, V. S., 1994, Kinetics of nitric oxide autoxidation in aqueous solution, J. Biol. Chem. 269:5881–5883.

    CAS  PubMed  Google Scholar 

  • Kharitonov, V. G., Sundquist, A. R., and Sharma, V. S., 1995, Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen, J. Biol. Chem. 270:28158–28164.

    CAS  PubMed  Google Scholar 

  • King, P. A., Anderson, V. E., Edwards, J. O., Gustafson, G., Plumb, R. C., and Suggs, J. W., 1992, A stable solid that generates hydroxyl radical upon dissolution in aqueous solutions: Reaction with proteins and nucleic acid, J. Am. Chem. Soc. 114:5430–5432.

    CAS  Google Scholar 

  • Klaning, U. K., and Wolff, T., 1985, Laser flash photolysis of HC1O, ClO, HBrO, and BrO in aqueous solution. Reactions of Cl-and Br-atoms, Ber. Bunsenges. Phys. Chem. 89:243–245.

    Google Scholar 

  • Kobayashi, K., Miki, M., and Tagawa, S., 1995, Pulse-radiolysis study of the reaction of nitric oxide with superoxide, J. Chem. Soc. Dalton Trans. 1995:2885–2889.

    Google Scholar 

  • Kochi, J. K., 1962, Chemistry of alkoxy radicals: Cleavage reactions, J. Am. Chem. Soc. 84:1193–1197.

    CAS  Google Scholar 

  • Koelewijn, P., 1972, Epoxidation of olefins by alkylperoxyl radicals, Recl. Trav. Chim. Pays-Bas 91:759–779.

    CAS  Google Scholar 

  • Koppenol, W. H., 1985, The reaction of ferrous EDTA with hydrogen peroxide: Evidence against hydroxyl radical formation, Free Radical Biol. Med. 1:281–285.

    CAS  Google Scholar 

  • Koppenol, W. H., 1993, The centennial of the Fenton reaction, Free Radical Biol. Med. 15:645–651.

    CAS  Google Scholar 

  • Koppenol, W. H., and Butler, J., 1985, Energies of interconversion reactions of oxyradicals, Adv. Free Radical Biol.Med. 1:91–131.

    CAS  Google Scholar 

  • Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., and Beckman, J. S., 1992, Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide, Chem. Res. Toxicol. 5:834–842.

    Article  CAS  PubMed  Google Scholar 

  • Krauss, M., 1994, Electronic structure and spectra of the peroxynitrite anion, Chem. Phys. Lett. 222:513–516.

    Article  CAS  Google Scholar 

  • Kuhn, A. T, and Rice, C. L., 1985, The Halogens, in: Standard Potentials in Aqueous Solution (A. J. Bard, R. Parsons, and J. Jordan, eds.), pp. 67–92, Dekker, New York.

    Google Scholar 

  • Laskey, R. E., and Mathews, W. R., 1996, Nitric oxide inhibits peroxynitrite-induced production of hydroxyei-cosatetraenoic acids and F2-isoprostanes in phosphatidylcholine liposomes. Arch. Biochem. Biophys. 330:193–198.

    Article  CAS  PubMed  Google Scholar 

  • Lemercier, J.-N., Squadrito, G. L., and Pryor, W. A., 1995, Spin trap studies on the decomposition of peroxynitrite, Arch. Biochem. Biophys. 321:31–39.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R. S., and Deen, W. M., 1994, Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions, Chem. Res. Toxicol. 7:568–574.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R. S., Tannenbaum, S. R., and Deen, W. M., 1995, Kinetics of N-nitrosation in oxygenated nitric oxide solutions at physiological pH: Role of nitrous anhydride and effects of phosphate and chloride, J. Am. Chem. Soc. 117:3933–3939.

    CAS  Google Scholar 

  • Liebler, D. C., Stratton, S. R, and Kaysen, K. L., 1997, Antioxidant actions of β-carotene in liposomal and microsomal membranes: Role of carotenoid-membrane incorporation and α-tocopherol, Arch. Biochem. Biophys. 338:244–250.

    Article  CAS  PubMed  Google Scholar 

  • Lissi, E. A., Encinas, M. V., Lemp, E., and Rubio, M. A.,1993, Singlet oxygen O2(1Δg) bimolecular processes. Solvent and compartmentalization effects, Chem. Rev. 93:699–723.

    Google Scholar 

  • Løgager, T., and Sehested, K., 1993, Formation and decay of pernitrous acid: A pulse radiolysis study, J. Phys. Chem. 97:6664–6669.

    Google Scholar 

  • Long, C. A., and Bielski, B. H. J., 1980, Rate of reaction of superoxide radical with chlorine-containing species, J. Phys. Chem. 84:555–557.

    Article  CAS  Google Scholar 

  • Luo, Y, Han, Z., Chin, S. M., and Linn, S., 1994, Three chemically distinct types of oxidants formed by iron-mediated Fenton reactions in the presence of DNA, Proc. Natl. Acad. Sci. USA 91:12438–12442.

    CAS  PubMed  Google Scholar 

  • Lymar, S. V., and Hurst, J. K., 1995, Rapid reaction between peroxonitrite ion and carbon dioxide: Implications for biological activity, J. Am. Chem. Soc. 117:8867–8868.

    Article  CAS  Google Scholar 

  • Lymar, S. V., Jiang, Q., and Hurst, J. K., 1996, Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite, Biochemistry 35:7855–7861.

    Article  CAS  PubMed  Google Scholar 

  • Mahoney, L. R., 1970, Evidence for the formation of hydroxyl radicals in the isomerization of pernitrous acid in aqueous solution, J. Am. Chem. Soc. 92:5262–5263.

    CAS  Google Scholar 

  • Mao, Y., Zang, L., and Shi, X., 1995, Singlet oxygen generation in the superoxide reaction, Biochem. Mol. Biol. Interact. 36:227–232.

    CAS  Google Scholar 

  • March, J., 1985, Advanced Organic Chemistry, 3rd ed., Wiley, New York.

    Google Scholar 

  • Marcus, R. A., and Sutin, N., 1985, Electron transfer in chemistry and biology, Biochim. Biophys. Acta 811:265–322.

    CAS  Google Scholar 

  • Masarwa, M., Cohen, H. Meyerstein, D., Hickman, D. L., Bakac, A., and Espenson, J. H., 1988, Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cu +aq and Cr 2+aq J. Am. Chem. Soc. 110:4293–4297.

    Article  CAS  Google Scholar 

  • McGrath, M. P., and Rowland, F. S., 1994, Determination of the barriers of internal rotation in ONOOX (X=H, Cl) and characterization of the minimum energy conformers, J. Phys. Chem. 98:1061–1067.

    CAS  Google Scholar 

  • McKee, M. L., 1995, Ab initio study of the N2O4 potential energy surface. Computational evidence for a new N2O4 isomer, J. Am. Chem. Soc. 117:1629–1637.

    CAS  Google Scholar 

  • Meisel, D., Levanon, H., and Czapski, G., 1974, Hydroperoxyl radical reactions. II. Cupric ions in modulated photolysis. Electron paramagnetic resonance experiments, J. Phys. Chem. 78:779–782.

    CAS  Google Scholar 

  • Merenyi, G., Lind, J., and Engman, L., 1994. One-and two electron reduction potentials of peroxyl radicals and related species. J. Chem. Soc. Perkin Trans. 2 1994:2551–2553.

    Google Scholar 

  • Moffett, J. W., and Zika, R. G., 1987, Reaction kinetics of hydrogen peroxide with copper and iron in seawater, Environ. Sci. Technol. 21:804–810.

    Article  CAS  Google Scholar 

  • Moore, J. S., Phillips, G. O., and Sosnowski, A., 1977, Reaction of the carbonate radical anion with substituted phenols, Int. J. Radiat, Biol. 31:603–605.

    CAS  Google Scholar 

  • Mosseri, S., Alfassi, Z. B., and Neta, P., 1987, Absolute rate constants for hydrogen abstraction from hydrocarbons by the trichloromethylperoxyl radical, Int. J. Chem. Kinet. 19:309–317.

    Article  CAS  Google Scholar 

  • Mukai, K., Daifuku, K., Okabe, K., Tanigaki, T., and Inoue, K., 1991, Structure-activity relationship in the quenching reaction singlet oxygen by tocopherol (vitamin E) derivatives and related phenols. Finding of linear correlation between the rates of quenching of singlet oxygen and scavenging of peroxyl radicals in solution, J. Org. Chem. 56:4188–4192.

    Article  CAS  Google Scholar 

  • Murray, R. W., 1979, Chemical sources of singlet oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 59–114, Academic Press, New York.

    Google Scholar 

  • Nagano, T., and Fridovich, I., 1985, Docs the xanthine oxidase reaction generate singlet oxygen? Photochem. Photobiol. 41:33–37.

    CAS  PubMed  Google Scholar 

  • Nahor, G. S., and Neta, R, 1991, Rate constants for reactions of perfluorobutylperoxyl radical with alkenes, Int. J. Chem. Kinet. 23:941–946.

    Article  CAS  Google Scholar 

  • Navarro, J. A., Rosa, M. A. d. l., Roncel, M., and Rosa, F. F. d. l., 1984, Carbon dioxide-mediated decomposition of hydrogen peroxide in alkaline solutions, J. Chem. Soc. Faraday Trims. 1 80:249–253.

    CAS  Google Scholar 

  • Neta, P., Huie, R. E., and Ross, A. B., 1988, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data 17:1027–1284.

    CAS  Google Scholar 

  • Neta, P., Huie, R. E., Maruthamuthu, P., and Steenken, S., 1989a, Solvent effects in the reactions of peroxyl radicals with organic reductants. Evidence for proton transfer mediated electron transfer, J. Phys. Chem. 93:7654–7659.

    CAS  Google Scholar 

  • Neta, P., Huie, R. E., Mosseri, S., Shastri, L. V., Mittal, J. P., Maruthamuthu, P., and Steenken, S., 1989b, Rate constants for reaction of substituted methylperoxyl radicals with ascorbate ions and TMPD, J. Phys. Chem. 93:4099–4104.

    CAS  Google Scholar 

  • Neta, P., Huie, R. E., and Ross, A. B., 1990, Rate constants for reactions of peroxyl radicals in fluid solutions, J. Phys. Chem. Ref. Data 19:413–513.

    CAS  Google Scholar 

  • Neta, P., Grodkowski, J., and Ross, A. B., 1996, Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution, J. Phys. Chem. Ref. Data 24:709–1068.

    Google Scholar 

  • Noronha-Dutra, A. A., Epperlein, M. M., and Woolf, N., 1993, Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing, FEBS Lett. 321:59–62.

    Article  CAS  PubMed  Google Scholar 

  • Nottingham, W. C., and Sutter, J. R., 1986, Kinetics of the oxidation of nitric oxide by chlorine and oxygen in nonaqueous media, Int. J. Chem. Kinet. 18:1289–1302.

    Article  CAS  Google Scholar 

  • Ogryzlo, E. A., 1979, Gaseous singlet oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 35–58, Academic Press, New York.

    Google Scholar 

  • Packer, J. E., Slater, T. F., and Willson, R. L., 1979, Direct observation of a free radical interaction between vitamin E and vitamin C, Nature 278:737–738.

    Article  CAS  PubMed  Google Scholar 

  • Padmaja, S., and Huie, R. E., 1993, The reaction of nitric oxide with organic peroxyl radicals, Biochem. Biophys. Res. Commun. 195:539–544.

    Article  CAS  PubMed  Google Scholar 

  • Padmaja, S., Ramazenuan, M. S., Bounds, P. L., and Koppenol, W. H., 1996, Reaction of peroxynitrite with L-tryptophan, Redox Rep. 2: 173–177.

    CAS  Google Scholar 

  • Pan, X.-M., and von Sonntag, C., 1990, OH-radical-induced oxidation of benzene in the presence of oxygen. A pulse radiolysis study, Z. Naturforsch. B45:1337–1344.

    Google Scholar 

  • Pasternack, R. F., and Halliwell, B., 1979, Superoxide dismutase activities of an iron porphyrin and other iron complexes, J. Am. Chem. Soc. 101:1026–1031.

    Article  CAS  Google Scholar 

  • Pasternack, R. F., and Skowronek, W. R., 1979, Catalysis of the disproportionation of superoxide by metalloporphyrins, J. Inorg. Biochem. 11:261–267.

    Article  CAS  PubMed  Google Scholar 

  • Paul, H., Small, R. D., and Scaiano, J.C., 1978, Hydrogen abstraction by tert-butoxy radicals. A laser photolysis and electron spin resonance study, J. Am. Chem. Soc. 100:4520–4527.

    Article  CAS  Google Scholar 

  • Peretz, P., Solomon, D., Weinraub, D., and Faraggi, M., 1982, Chemical properties of water-soluble porphyrins 3. The reaction of superoxide radicals with some metalloporphyrins. Int. J. Radiat. Biol. 42:449–456.

    CAS  Google Scholar 

  • Pires, M., Rossi, M. J., and Ross, D. S., 1994, Kinetic and mechanistic aspects of the NO oxidation by O2 in aqueous phase, Int. J. Chem. Kinet. 26:1207–1227.

    Article  CAS  Google Scholar 

  • Plumb, R. C., Edwards, J. O., and Herman, M. A., 1992, Problem of concurrent measurements of peroxonitrite and nitrite contents, Analyst 117:1639–1641.

    Article  CAS  Google Scholar 

  • Pogozelski, W. K., McNeese, T. J., and Tullius, T. D., 1995, What species is responsible for strand scission in the reaction of [FeHEDTA]2 and H2O2 with DNA? J. Am. Chem. Soc. 117:6428–6433.

    Article  CAS  Google Scholar 

  • Pogrebnaya, V. L., Usov, A. P., Baranov, A. V., Nesterenko, A. I., and Bez"yazychnyi, P. I., 1975, Oxidation of nitric oxide by oxygen in the liquid phase, Zh. Prikl. Khim. (English Trans.) 48:1004–1007.

    Google Scholar 

  • Porter, N. A., 1986, Mechanisms for the autoxidation of polyunsaturated lipids, Acc. Chem. Res. 19:262–268.

    Article  CAS  Google Scholar 

  • Porter, N. A., Mills, K. A., and Carter, R. L., 1994, A mechanistic study of oleate autoxidation: Competing peroxyl H-atom abstraction and rearrangement, J. Am. Chem. Soc. 116:6690–6696.

    CAS  Google Scholar 

  • Prütz, W. A., 1996, Hypochlorous acid interactions with thiols, nucleotides, DNA and other biological substrates, Arch. Biochem. Biophys. 332:110–120.

    Article  PubMed  Google Scholar 

  • Prütz, W. A., Mönig, H., Butler, J., and Land, E. J., 1985, Reactions of nitrogen dioxide in aqueous model systems: Oxidation of tyrosine units in peptides and proteins, Arch. Biochem. Biophys. 243:125–134.

    PubMed  Google Scholar 

  • Pryor, W. A., Lightsey, J. W., and Church, D. F., 1982, Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: Addition and hydrogen abstraction mechanisms, J. Am. Chem. Soc. 104:6685–6692.

    CAS  Google Scholar 

  • Pryor, W. A., Jin, X., and Squadrito, G. L., 1994, One-and two-electronoxidations of methionine by peroxynitrite, Proc. Natl. Acad. Sci. USA 91:11173–11177.

    CAS  PubMed  Google Scholar 

  • Rabani, J., Klug-Roth, D., and Lilie, J., 1973, Pulse radiolytic investigations of the catalyzed diproportionation of peroxy radicals. Aqueous cupric ions, J. Phys. Chem. 77:1169–1175.

    Article  CAS  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., and Free, B. A., 1991a, Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys. 288:481–487.

    CAS  PubMed  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991b, Peroxynitrite oxidation of sulfhydryls, J. Biol. Chem. 266:4244–4250.

    CAS  PubMed  Google Scholar 

  • Radi, R., Cosgrove, T. P., Beckman, J. S., and Freeman, B. A., 1993, Peroxynitrite-induced luminol chemiluminescence, Biochem. J. 290:51–57.

    CAS  PubMed  Google Scholar 

  • Rahhal, S, and Richter, H.W., 1988, Reduction of hydrogen peroxide by the ferrous ironchelate of diethylenetriamine-N, N, N,N’,N’-pentaacetate, J. Am. Chem. Soc. 110:3126–3133.

    Article  CAS  Google Scholar 

  • Ramezanian, M. S., Padmaja, S., and Koppenol, W. H., 1996, Nitration and hydroxylation of phenolic compounds by peroxynitrite, Chem. Res. Toxicol. 9:232–240.

    Article  CAS  PubMed  Google Scholar 

  • Reszka, K. J., Chignell, C. F., and Bilski, P., 1994, Spin trapping of nitric oxide (NO) by acinitromethane in aqueous solution, J. Am. Chem Soc. 116:4119–4120.

    Article  CAS  Google Scholar 

  • Ross, A. B., Mallard, W. G., Hellman, W. P., Bielski, B. H. J., Buxton, G. V., Cabelli, D. E., Greenstock, C. L., Huie, R. E., and Neta, P., 1997, NDRL/NIST solution kinetics database. Ver. 3.0, NIST Standard Reference Database 40.

    Google Scholar 

  • Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman, B. A., 1994, Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation, J. Biol. Chem. 269:26066–26075.

    CAS  PubMed  Google Scholar 

  • Rush, J. D., and Koppenol, W. H., 1986, Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome, J. Biol. Chem. 261:6730–6733.

    CAS  PubMed  Google Scholar 

  • Rush, J.D., and Koppenol, W.H., 1987, The reaction between ferrous polyaminocarboxylate complexes and hydrogen peroxide: An investigation of the reaction intermediates by stopped flow spectrophotometry, J. Inorg. Biochem. 29:199–215.

    Article  CAS  PubMed  Google Scholar 

  • Samuni, A., 1972, The precursors of the metal-complexed hydroperoxyl radical, J. Phys. Chem. 76:2207–2213.

    Article  CAS  Google Scholar 

  • Samuni, A., and Czapski, G., 1970a, Complexes of peroxy radical with transition metal ions, J.Phys.Chem. 74:4592–4594.

    Article  CAS  Google Scholar 

  • Samuni, A., and Czapski, G., 1970b, Oxidation of Ce3+ by HO2 radical and Ce3+-HO2 complex formation, Israel. Chem. 8:551–561.

    CAS  Google Scholar 

  • Samuni, A., Aronovitch, J., Chevion, M., and Czapski, G., 1983. Metal-mediated hydroxyl radical damage. A site-specific mechanism, in Oxidative Damage and Related Enzymes. Life Chemistry Reports, Suppl. 2, pp. 39–47.

    Google Scholar 

  • Saran, M., Michel, C., and Bors, W., 1990, Reaction of NO with O -2 Implications for the action of endothelium-derived relaxing factor (EDRF), Free Radical Res. Commun. 10:221–226.

    CAS  Google Scholar 

  • Sawyer, D. T., and Valentine, J. S., 1981, How super is superoxide? Acc. Chem. Res. 14:393–400.

    Article  CAS  Google Scholar 

  • Sawyer, D. T., Hage, J. P., and Sobkowiak, A., 1995, Iron(II)-induced activation of 1:1 HOOH/HC1 for the chlorohydroxylation of olefins and the chlorination of hydrocarbons: Chlorinated Fenton chemistry, J. Am. Chem. Soc. 117:106–109.

    Article  CAS  Google Scholar 

  • Sawyer, D. T., Knag, C., Llobet, A., and Redman, C., 1993, Fenton reagents (1:1 FeI↕Lx/HOOH) react via [LxFeIIOOH(BH+)] (1) as hydroxylases (RH-ROH), not as generators of free hydroxyl radicals (HO), J. Am. Chem. Soc. 115:5817–5818.

    Article  CAS  Google Scholar 

  • Schaap, A. P., and Zaklika, K. A., 1979, 1,2-Cycloaddition reactions of singlet oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 173–242, Academic Press, New York.

    Google Scholar 

  • Schöneich, C., Aced, A., and Asmus, K.-D., 1991, Halogenated peroxyl radicals as two-electron-transfer agents. Oxidation of organic sulfides to sulfoxides, J. Am. Chem. Soc. 113:376–377.

    Google Scholar 

  • Scully, F. E., and Hoigné, J., 1987, Rate constants for reactions of singlet oxygen with phenols and other compounds in water, Chemosphere 16:681–694.

    Article  CAS  Google Scholar 

  • Scurlock, R., Rougee, M., and Bensasson, R. V., 1989, Redox properties of phenols, their relationships to singlet oxygen quenching and to their inhibitory effects on benzo(a)pyrene-induced neoplasia, Free Radical Res. Commun. 8:251–258.

    Google Scholar 

  • Shi, X., Mao. Y., Knapton, A. D., Ding, M, Rojanasakul, Y., Gannett, P. M., Dalal, N., and Liu, K., 1994a, Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: Role of a Cr(IV)-mediated Fenton-like reaction, Carcinogenesis 15:2475–2478.

    CAS  PubMed  Google Scholar 

  • Shi, X., Rojanasakul, Y, Gannett, P., Liu, K., Mao, Y, Daniel, L. N., Ahmed, N., and Saffiotti, U., 1994b, Generation of thiyl and ascorbyl radicals in the reaction of peroxynitrite with thiols and ascorbate at physiological pH, J. Inorg. Biochem. 56:77–86.

    CAS  PubMed  Google Scholar 

  • Shoute, L. C.T., Alfassi, Z. B., Neta, P., and Huie, R. E., 1994, Rate constants for reactions of (perhaloalkyl)peroxyl radicals with alkenes in methanol, J. Phys. Chem. 98:5701–5704.

    CAS  Google Scholar 

  • Solomon, D., Peretz, P., and Faraggi, M., 1982, Chemical properties of water-soluble prophyrins. 2. The reaction of iron(III) tetrakis(4-N-methylpyridyl) prophyrin with the superoxide radical dioxygen couple, J. Phys. Chem. 86:1842–1849.

    Article  CAS  Google Scholar 

  • Spinks, J. W. T., and Woods, R. J., 1990, Introduction to Radiation Chemistry, 3rd ed., Wiley, New York.

    Google Scholar 

  • Sprung, J. L., Akimota, H., and Pitts, J. N., 1974, Nitrogen dioxide catalyzed geometric isomerization of olefins. Isomerization kinetics of the 2-butenes and the 2-pentenes, J. Am. Chem. Soc. 96:6549–6554.

    Article  CAS  Google Scholar 

  • Squadrito, G. L., Jin, X., and Pryor, W. A., 1995, Stopped-flow kinetic study of the reaction of ascorbic acid with peroxynitrite, Arch. Biochem. Biophys. 322:53–59.

    Article  CAS  PubMed  Google Scholar 

  • Stanbury, D. M., 1989, Reduction potentials involving inorganic free radicals in aqueous solution, Adv. Inorg. Chem. 33:69–138.

    CAS  Google Scholar 

  • Stohs, S. J., and Bagchi, D., 1995, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18:321–336.

    Article  CAS  Google Scholar 

  • Sutton, H. C., 1975, Reactions of the hydroperoxyl radical (HO2) with nitrogen dioxide and tetranitromethane in aqueous solution, J. Chem. Soc. Faraday Trans. I 71:2142–2147.

    Article  CAS  Google Scholar 

  • Sutton, H. C., Seddon, W. A., and Sopchyshyn, F. C., 1978, Pulse radiolysis: Evidence for the reaction of HO2 with NO2 in aqueous solution, Can. J. Chem. 56:1961–1964.

    CAS  Google Scholar 

  • Taft, R. W., 1956, Separation of polar, steric, and resonance effects in reactivity, in Steric Effects in Organic Chemistry (M. S. Newman, ed.), p. 619, Wiley, New York.

    Google Scholar 

  • Taha, Z., Kiechle, F., and Malinski, T., 1992, Oxidation of nitric oxide by oxygen in biological systems monitored by porphyrinic sensor, Biochem. Biophys. Res. Commun. 188:734–739.

    Article  CAS  PubMed  Google Scholar 

  • Tanielian, C., and Mechin, R., 1994, Reaction and quenching of singlet molecular oxygen with esters of polyunsaturated fatty acids, Photochem. Photobiol. 59:263–268.

    CAS  PubMed  Google Scholar 

  • Titov, A. I., 1963, The free radical mechanism of nitration, Tetrahedron 19:557–580.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., and Hoigné, J., 1991, Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen, Environ. Sci. Technol. 25:1596–1604.

    Article  CAS  Google Scholar 

  • Tsai, J.-H. M., Harrison, J. G., Martin, J. C., Hamilton, T. P., van der Woerd, M., Jablonsky, M. J., and Beckman, J. S.,1994, Role of conformation of peroxynitrate anion (ONOO-) in its stability and toxicity, J. Am. Chem. Soc. 116:4115–4116.

    Google Scholar 

  • Tsang, W., 1996, Heats of formation of organic free radicals by kinetic methods, in Energetics of Free Radicals (A. Greenberg and J. Liebman, eds.), pp. 22–58, Chapman & Hall, London.

    Google Scholar 

  • Uppu, R. M., Squadrito, G. L., and Pryor, W. A., 1996, Acceleration of peroxynitrite oxidants by carbon dioxide, Arch. Biochem. Biophys. 327:335–343.

    Article  CAS  PubMed  Google Scholar 

  • van der Vliet, A., Eiserich, J. P., O’Neill, C. A., Halliwell, B., and Cross, C. E., 1995, Tyrosine modification by reactive nitrogen species: A closer look, Arch. Biochem. Biophys. 319:341–349.

    PubMed  Google Scholar 

  • von Sonntag, C., and Schuchmann, H.-P., 1991, The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical methods, Angew. Chem. Int. Ed. Engl. 30:1229–1253.

    Google Scholar 

  • Wagner, B. A., Buettner, G. R., and Burns, C. P., 1994, Free radical-mediated lipid peroxidation in cells: Oxidizability is a function of celllipid bis-allylic hydrogen content, Biochemistry 33:4449–4453.

    Article  CAS  PubMed  Google Scholar 

  • Walling, C., 1975, Fenton’s reagent revisited, Acc. Chem. Res. 8:125–131.

    Article  CAS  Google Scholar 

  • Wallington, T. J., Dagaut, P., and Kurylo, M. J., 1988, Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds, J. Phys.Chem. 92:5024–5028.

    CAS  Google Scholar 

  • Wallington, T. J., Dagaut, P., and Kurylo, M. J., 1992, Ultraviolet absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase, Chem. Rev. 92:667–710.

    Article  CAS  Google Scholar 

  • Wardman, P., and Candeias, L. P., 1996, Fenton chemistry: An introduction, Radial. Res. 145:523–531.

    CAS  Google Scholar 

  • Warneck, P., and Wurzinger, C., 1988, Product quantum yields for the 305-nm photodecomposition of NO -3 in aqueous solution, J. Phys. Chem. 92:6278–6283.

    Article  CAS  Google Scholar 

  • Weiberg, K. B., 1964, Physical Organic Chemistry, Wiley, New York.

    Google Scholar 

  • Wilkinson, F., and Brummer, J. G., 1981, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution, J. Phys. Chem. Ref. Data 10:809–999.

    CAS  Google Scholar 

  • Wink, D. A., Darbyshire, J. E, Nims, R. W., Saavedra, J. E., and Ford, P. C., 1993a, Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O reaction, Chem. Res. Toxicol. 6:23–27.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Hanbauer, I., Krishna, M. C., DeGraff, W., Gamson, J., and Mitchell, J. B., 1993b, Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species, Proc. Natl. Acad. Sci. USA 90:9813–9817.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Nims, R. W., Darbyshire, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Laval, J., Cook, J. A., Krishna, M. C., DeGraff, W. G., and Mitchell, J. B., 1994a, Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction, Chem. Res. Toxicol. 7:519–525.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Wink, C. B., Nims, R. W., and Ford, P. C., 1994b, Oxidizing intermediates generated in the fenton reagent: Kinetic arguments against the intermediacy of the hydroxyl radical, Environ. Health Perspect. 102:11–15.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Cook, J. A., Krishna, M. C., Hanbauer, I., DeGraff, W., Gamson, J., and Mitchell, J. B., 1995, Nitric oxide protects against alkyl peroxide-mediated cytotoxicity: Further insights into the role nitric oxide plays in oxidative stress, Arch. Biochem. Biophys. 319:402–407.

    Article  CAS  PubMed  Google Scholar 

  • Wink, D. A., Cook, J. A., Pacelli, R., DeGraff, W., Gamson, J., Liebmann, J., Krishna, M. C., and Mitchell, J. B., 1996, The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: A direct correlation between nitric oxide formation and protection, Arch. Biochem. Biophys. 331:241–248.

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn, C. C., 1985, Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite, Biochim. Biophys. Acta 840:204–210.

    CAS  PubMed  Google Scholar 

  • Winterbourn, C. C., 1993, Superoxide as an intercellular radical sink, Free Radical Biol. Med. 14:85–90.

    Article  CAS  Google Scholar 

  • Winterbourn, C. C., Berg, J. J. M. v. d., Roitman, E., and Kuypers, F. A., 1992, Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid, Arch. Biochem. Biophys. 296:547–555.

    Article  CAS  PubMed  Google Scholar 

  • Wolcott, R. G., Franks, B. S., Hannum, D. M., and Hurst, J. K., 1994, Bactericidal potency of hydroxyl radical in physiological environments, J. Biol. Chem. 269:9721–9728.

    CAS  PubMed  Google Scholar 

  • Yamazaki, I., and Piette, L. H., 1991, EPR Spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide, J. Am. Chem. Soc. 113:7588–7593.

    Article  CAS  Google Scholar 

  • Yang, G., Candy, T. E. G., Boaro, M., Wilkin, H. E., Jones, P., Nazhat, N. B., Saadalla-Nazhat, R. A., and Blake, D. R., 1992, Free radical yields from the homolysis of peroxynitrous acid, Free Radical Biol. Med. 12:327–330.

    Article  CAS  Google Scholar 

  • Ye, M., and Schuler, R. H., 1989, Second-order combination reactions of phenoxyl radicals, J. Phys. Chem. 93:1989–1902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Huie, R.E., Neta, P. (2002). Chemistry of Reactive Oxygen Species. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics