Skip to main content

Molecular Patterning of the Embryonic Brain

  • Chapter
The Vertebrate Organizer

Abstract

The development of the nervous system is a very complex process, of which the underlying mechanisms are slowly beginning to be elucidated. This chapter will focus on the early molecular patterning of the different regions within the embryonic brain: how development occurs from a single fertilized egg to a fully functional and differentiated nervous system. The nervous system is comprised of three axes, the anterior-posterior (AP), dorsal-ventral (DV) and left-right (LR). Each of these axes is patterned by a different combination of signals. Patterning along the AP axis subdivides the nervous system into four main regions, most rostral the forebrain (prosencephalon; subdivided later into telencephalon and diencephalon), the midbrain (mesencephalon; tectum and tegmentum), hindbrain (rhombencephalon; rhombomeres) and, finally, most caudal the spinal cord. One proposal of how the AP axis of the nervous system is initially established is the Nieuwkoop model which proposes that patterning occurs by two signals, an “activation” signal which initially induces neural tissue with anterior character (forebrain and midbrain) followed by a “transformation” signal, which posteriorizes the neural tissue (hindbrain and spinal cord; Nieuwkoop et al. 1952). This model seems to prevail based on current molecular knowledge of CNS development. The DV axis is established by a combination of signals. From the underlying axial mesoderm factors such as sonic hedgehog (Shh) induce and maintain the ventral fate of the neural tube. From the epidermis (or non-neural ectoderm) BMP/GDF family members induce and maintain the dorsal fate. Finally, while less is understood about how the LR axis is specified, signaling mediated by members of the TGFβ family, such as nodal, have been suggested to be involved. This chapter will discuss what is known to date about early neural patterning. The data discussed originate from a variety of model systems and hence provide us with a comparative molecular approach to understanding these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P (1995) Forebrain and midbrain regions are deleted in Otx2-–mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121: 3279–3290

    PubMed  CAS  Google Scholar 

  • Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R, Rubenstein JL (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, de Robertis EM (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403: 658–661

    Article  PubMed  CAS  Google Scholar 

  • Bally-Cuif L, Cholley B, Wassef M (1995) Involvement of Wnt-1 in the formation of the mes metencephalic boundary. Mech Dev 53: 23–34

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Wingate RJ, Lumsden A (1999) Homeotic transformation of rhombomere identity after localized Hoxbl misexpression. Science 284: 2168–2171

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ensini M, Gulisano M, Lumsden A (2001) Dynamic domains of gene expression in the early avian forebrain. Dev Biol 236: 76–88

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Munoz-Sanjuân I, Altmann CR, Vonica A, Brivanlou AH (2003) Cell fate specification and competence by Coco, a novel maternal BMP, TGFI3 and Wnt inhibitor. Development (in press) 130:1381–1389

    Google Scholar 

  • Blumberg B, Bolado J Jr, Moreno TA, Kintner C, Evans RM, Papalopulu N (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124: 373–379

    PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing se-creted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601

    Article  PubMed  CAS  Google Scholar 

  • Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P,Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, van Eeden FJ, Nusslein-Volhard C (1996) Mutations in zebrafish genes affecting the formation of the boundary be-tween midbrain and hindbrain. Development 123: 179–190

    Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JL (1993) Spatially restricted expression of Dlx-1, Dix-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13: 3155–3172

    PubMed  CAS  Google Scholar 

  • Carl M, Loosli F, Wittbrodt J (2002) Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 129: 4057–4063

    PubMed  CAS  Google Scholar 

  • Casellas R, Brivanlou AH (1998) Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. Dev Biol 198: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413

    Article  PubMed  CAS  Google Scholar 

  • Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Cox W, Hemmati-Brivanlou A (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121: 4349–4358

    PubMed  CAS  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Davis CA, Holmyard DP, Millen KJ, Joyner AL (1991) Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111: 287–298

    PubMed  CAS  Google Scholar 

  • Ericson J, Muhr J, Jessell TM, Edlund T (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int J Dev Biol 39: 809–816

    PubMed  CAS  Google Scholar 

  • Fekany-Lee K, Gonzalez E, Miller-Bertoglio V, Solnica-Krezel L (2000) The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2 4 and Wnt pathways. Development 127: 2333–2345

    PubMed  CAS  Google Scholar 

  • Figdor MC, Stern CD (1993) Segmental organization of embryonic diencephalon. Nature 363: 630–634

    Article  PubMed  CAS  Google Scholar 

  • Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344: 431–435

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294: 1071–1074

    Article  PubMed  CAS  Google Scholar 

  • Gallego-Diaz V, Schoenwolf GC, Alvarez IS (2002) The effects of BMPs on early chick embryos suggest a conserved signaling mechanism for epithelial and neural induction among vertebrates. Brain Res 57: 289–291

    Google Scholar 

  • Garda AL, Puelles L, Rubenstein JL, Medina L (2002) Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain patterning centers and morphogenesis. Neuroscience 113: 689–698

    Article  PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Onichtchouk D, Blumenstock C, Niehrs C (1997) Head induction by simulta-neous repression of Bmp and Wnt signalling in Xenopus. Nature 389: 517–519

    Article  PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan PA, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a mem-ber of a new family of secreted proteins and functions in head induction. Nature 391: 357–362

    Article  PubMed  CAS  Google Scholar 

  • Golden JA, Cepko CL (1996) Clones in the chick diencephalon contain multiple cell types and siblings are widely dispersed. Development 122: 65–78

    PubMed  CAS  Google Scholar 

  • Golden JA, Zitz JC, McFadden K, Cepko CL (1997) Cell migration in the developing chick diencephalon. Development 124: 3525–3533

    PubMed  CAS  Google Scholar 

  • Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS (2000) Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127: 5355–5365

    PubMed  CAS  Google Scholar 

  • Guthrie S, Prince V, Lumsden A (1993) Selective dispersal of avian rhombomere cells in ortho-topic and heterotopic grafts. Development 118: 527–538

    PubMed  CAS  Google Scholar 

  • Hansen CS, Marion CD, Steele K, George S, Smith WC (1997) Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124:483–492 Harland R (2000) Neural induction. Curr Opin Genet Dev 10: 357–362

    Google Scholar 

  • Hata A, Lagna G, Massague J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12: 186–197

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg CP, Houart C, Take-Uchi M, Rauch GJ, Young N, Coutinho P, Masai I, Caneparo L, Concha ML, Geisler R, Dale TC, Wilson SW, Stemple DL (2001) A mutation in the Gsk3-binding domain of zebrafish Masterblind Axinl leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev 15: 1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos Nature 359: 609–614

    CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77: 273–281

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, de la Torre JR, Holt C, Harland RM (1991) Cephalic expression and molecular characterization of Xenopus En-2. Development 111: 715–724

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is ex-pressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus em-bryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17: 78–89

    Article  PubMed  CAS  Google Scholar 

  • Hill CS (2001) TGF-beta signalling pathways in early Xenopus development. Curr Opin Genet Dev 11: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Houart C, Wilson SW, Stainier DY (1999) A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol 9: 1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Holowacz T, Sokol S (1999) FGF is required for posterior neural patterning but not for neural induction. Dev Biol 205: 296–308

    Article  PubMed  CAS  Google Scholar 

  • Houart C, Westerfield M, Wilson SW (1998) A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391: 788–792

    Article  PubMed  CAS  Google Scholar 

  • Houart C, Caneparo L, Heisenberg C, Barth K, Take-Uchi M, Wilson S (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35: 255265

    Google Scholar 

  • Irving C, Mason I (1999) Regeneration of isthmic tissue is the result of a specific and direct interaction between rhombomere 1 and midbrain. Development 126: 3981–3989

    PubMed  CAS  Google Scholar 

  • Jones CM, Broadbent J, Thomas PQ, Smith JC, Beddington RS (1999) An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 9: 946–594

    Article  PubMed  CAS  Google Scholar 

  • Jungbluth S, Bell E, Lumsden A (1999) Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development 126: 2751–2758

    PubMed  CAS  Google Scholar 

  • Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, Chitnis AB (2000) Repressor activity of Headless Tcf3 is essential for vertebrate head formation. Nature 407: 913–916

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129: 83–93

    PubMed  CAS  Google Scholar 

  • Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129: 4335–4346

    Google Scholar 

  • Lamb TM, Harland RM (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121: 3627–3636

    PubMed  CAS  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262: 713–718

    Article  PubMed  CAS  Google Scholar 

  • Larsen CW, Zeltser LM, Lumsden A (2001) Boundary formation and compartition in the avian diencephalon. J Neurosci 21: 4699–4711

    PubMed  CAS  Google Scholar 

  • Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22: 261–294

    Article  PubMed  CAS  Google Scholar 

  • Liang JO, Etheridge A, Hantsoo L, Rubinstein AL, Nowak SJ, Izpisua Belmonte JC, Halpern ME (2000) Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127: 5101–5112

    PubMed  CAS  Google Scholar 

  • Liu A, Joyner AL (2001) Early anterior posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24: 869–896

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6: 971–981

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, Marin F, Nieto MA, Puelles L (1995) Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech Dev 51: 289303

    Google Scholar 

  • Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126: 1189–1200

    PubMed  CAS  Google Scholar 

  • McGrew LL, Lai C-J, Moon RT (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev Biol 172: 337–342

    Article  PubMed  CAS  Google Scholar 

  • McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120: 2199–2211

    PubMed  CAS  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt-1- Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69: 581–595

    Article  PubMed  CAS  Google Scholar 

  • Mellitzer G, Xu Q, Wilkinson DG (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Sanjuân I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3: 271–280

    Article  PubMed  Google Scholar 

  • Muzio L, DiBenedetto B, Stoykova A, Boncinelli E, Gruss P, Mallamaci A (2002) Conversion of cerebral cortex into basal ganglia in Emx2(- -) Pax6(Sey Sey) double-mutant mice. Nat Neurosci 5: 737–745

    PubMed  CAS  Google Scholar 

  • Myers DC, Sepich DS, Solnica-Krezel L (2002) Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18: 447–55

    Google Scholar 

  • Nakayama T, Gardner H, Berg LK, Christian JL (1998) Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Genes Cells 3: 387–934

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C (1999) Head in the Wnt–the molecular nature of Spemann’s head organizer. Trends Genet 15: 314–319

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Boterendbrood EC, Kremer A, Bloesma FFSN, Hoessels ELMJ, Meyer G, Verheyen FJ (1952) Activation and organization of the central nervous system in amphibians. J Exp Zool 120: 1–108

    Article  Google Scholar 

  • Ohkubo Y, Chiang C, Rubenstein JL (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini M, Mansouri A, Simeone A, Boncinelli E, Gruss P (1996) Dentate gyrus formation requires Emx2. Development 122: 3893–3898

    PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, de Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–710

    Google Scholar 

  • Prince V, Lumsden A (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest Development 120: 911–923

    CAS  Google Scholar 

  • Puelles L, Rubenstein JL (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16: 472–479

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424: 409438

    Google Scholar 

  • Rijli FM, Mark M, Lakkaraju S, Dierich A, Dolle P, Chambon P (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75: 1333–1349

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266: 578–580

    Article  PubMed  CAS  Google Scholar 

  • Sanders TA, Lumsden A, Ragsdale CW (2002) Arcuate plan of chick midbrain development. J Neurosci 22: 10742–10750

    PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790

    Google Scholar 

  • Schneider-Maunoury S, Seitanidou T, Charnay P, Lumsden A (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124: 1215–1226

    PubMed  CAS  Google Scholar 

  • Shanmugalingam S, Houart C, Picker A, Reifers F, Macdonald R, Barth A, Griffin K, Brand M,Wilson SW (2000) Ace Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127: 2549–2561

    CAS  Google Scholar 

  • Shawlot W, Behringer RR (1995) Requirement for Liml in head-organizer function. Nature 374: 425–430

    Article  PubMed  CAS  Google Scholar 

  • Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124: 2709–2718

    PubMed  CAS  Google Scholar 

  • Shimamura K, Martinez S, Puelles L, Rubenstein JL (1997) Patterns of gene expression in the neural plate and neural tube subdivide the embryonic forebrain into transverse and longitudinal domains. Dev Neurosci 19: 88–96

    Article  PubMed  CAS  Google Scholar 

  • Spemann H, Mangold H (1924) Über Induction von Embryonalanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux ’ Arch Entw Mech Org 100: 599–638

    Google Scholar 

  • Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406: 74–78

    Article  PubMed  CAS  Google Scholar 

  • Stoykova A, Fritsch R, Walther C, Gruss P (1996) Forebrain patterning defects in Small eye mutant mice. Development 122: 3453–3465

    PubMed  CAS  Google Scholar 

  • Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384: 630634

    Google Scholar 

  • Sun X, Meyers EN, Lewandoski M, Martin GR (1999) Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 13: 1834–46

    Article  PubMed  CAS  Google Scholar 

  • Szele FG, Cepko CL (1998) The dispersion of clonally related cells in the developing chick telencephalon. Dev Biol 195: 100–113

    Article  PubMed  CAS  Google Scholar 

  • Szucsik JC, Witte DP, Li H, Pixley SK, Small KM, Potter SS (1997) Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev Biol 191: 230–242

    Article  PubMed  CAS  Google Scholar 

  • Theil T, Aydin S, Koch S, Grotewold L, Ruther U (2002) Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129: 3045–3054

    PubMed  CAS  Google Scholar 

  • Van de Water S, van de Wetering M, Joore J, Esseling J, Bink R, Clevers H, Zivkovic D (2001) Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. De-velopment 128: 3877–3888

    Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376: 331–333

    Article  PubMed  CAS  Google Scholar 

  • Wilson SI, Rydstrom A, Trimborn T, Willert K, Nusse R, Jessell TM, Edlund T (2001) The status of

    Google Scholar 

  • Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411:325–330 Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development.Development 126: 4395–4404

    Google Scholar 

  • Wizenmann A, Lumsden A (1997) Segregation of rhombomeres by differential chemoaffinity. Mol Cell Neurosci 9: 448–459

    Article  PubMed  CAS  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer Nat Rev Neurosci 2: 99–108

    Article  CAS  Google Scholar 

  • Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14: 1141–1152

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, Aizawa S (1997) Emxl and Emx2 functions in development of dorsal telencephalon Development 124: 101–111

    CAS  Google Scholar 

  • Zeltser LM, Larsen CW, Lumsden A (2001) A new developmental compartment in the forebrain regulated by Lunatic fringe. Nat Neurosci 4: 683–684

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bell, E., Brivanlou, A.H. (2004). Molecular Patterning of the Embryonic Brain. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics