Skip to main content

Some Remarks on the Transmission Line Matrix (TLM) Method and Its Application to Transient EM Fields and to EMC Problems

  • Chapter
  • First Online:
Computational Electromagnetics—Retrospective and Outlook

Abstract

Wolfgang J.R. Hoefer has pioneered the Transmission Line Matrix (TLM) method and made it a powerful tool for time-domain modeling of electromagnetic fields. In his scientific work, Wolfgang Hoefer always is placing a strong focus on imagery thinking and geometric and physical understanding of the electromagnetic phenomena. In this contribution, we invite the apt reader to stroll with us through the garden of TLM and would like to share with him some thoughts on the origin of the TLM method and also present some specific applications. We discuss the relation of the TLM method to Christian Huygens’ model of light propagation and show how the TLM method can be deduced on the basis Huygens’ model by application of network theory. We show how the TLM scheme can be embedded in a general discrete time circuit concept. The application of the TLM method to electromagnetic compatibility (EMC) problems is discussed. As a time-domain method, the TLM method is optimally suited to model broadband and transient electromagnetic phenomena and therefore, combining the TLM method with the Integral Equation method yields a powerful tool for the modeling of complex electromagnetic structures separated by large distances in free space. Introducing network models allows the application of correlation matrix methods for the modeling of stochastic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.B. Johns, R. Beurle, Numerical solution of 2-dimensional scattering problems using a transmission-line matrix. Proc. IEEE 118(9), 1203–1208 (1971)

    Google Scholar 

  2. W.J.R. Hoefer, A history of time domain electromagnetics—a voyage back in time, in 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 137–140 (2012)

    Google Scholar 

  3. W.J. Hoefer, The transmission line matrix method-theory and applications. IEEE Trans. Microw. Theory Tech. 33, 882–893 (1985)

    Article  Google Scholar 

  4. W.J. Hoefer, in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, ed. by T. Itoh. The Transmission Line Matrix (TLM) Method (John Wiley, New York, 1989), pp. 496–591

    Google Scholar 

  5. W.J.R. Hoefer, Huygens and the computer-a powerful alliance in numerical electromagnetics. Proc. IEEE 79(10), 1459–1471 (1991)

    Article  Google Scholar 

  6. C. Christopoulos, The Transmission-Line Modeling Method TLM. (IEEE Press, New York, 1995)

    Google Scholar 

  7. P. Russer, The transmission line matrix method, in Applied Computational Electromagnetics, ser. NATO ASI Series (Springer, Berlin, 2000), pp. 243–269

    Google Scholar 

  8. D.G. Swanson, W.J. Hoefer, Microwave Circuit Modeling Using Electromagnetic Field Simulation (Artech House, London, 2003)

    Google Scholar 

  9. S.A. Kosmopoulos, W.J.R. Hoefer, A. Gagnon, Non-linear TLM modelling of high-frequency varactor multipliers and HalversTM. in 13 International Conference on Infrared and Millimeter Waves, 1988, pp. 239–240http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1256162=Opt

  10. P. Russer, P.P.M. So, W.J.R. Hoefer, Modeling of nonlinear active regions in TLM [distributed circuits]. IEEE Microwave Guided Wave Lett. 1(1), 10–13 (1991)

    Article  Google Scholar 

  11. J.S. Nielsen, W.J. Hoefer, Generalized dispersion analysis and spurious modes of 2-D and 3-D TLM formulations. IEEE Trans. Microw. Theory Tech. 41(8), 1375–1384 (1993)

    Article  Google Scholar 

  12. C. Eswarappa, W.J. Hoefer, One-way equation absorbing boundary conditions for 3-D TLM analysis of planar and quasi-planar structures. IEEE Trans. Microw. Theory Technol. 42(9), 1669–1677 (1994)

    Article  Google Scholar 

  13. C. Eswarappa, W.J.R. Hoefer, Diakoptics and wideband dispersive absorbing boundaries in the 3-D TLM method with symmetrical condensed node. IECE Trans. 74(5), 1242–1250 (1991)

    Google Scholar 

  14. M. Righi, W.J. Hoefer, M. Mongiardo, R. Sorrentino, Efficient TLM diakoptics for separable structures. IEEE Trans. Microw. Theory Technol. 43(4), 854–859 (1995)

    Article  Google Scholar 

  15. M. Righi, C. Eswarappa, W.J. Hoefer, P. Russer, An alternative way of computings–parameters via impulsive TLM analysis without using absorbing boundary conditions, in 1995 International Microwave Symposium Digest, Orlando, FL, USA (1995), pp. 1203–1206

    Google Scholar 

  16. C. Eswarappa, W.J. Hoefer, Fast s-parameter computation of a microstrip interdigital filter using TLM, Prony’s and digital filtering techniques. Int. J. Numer. Model. Electron. Netw. Devices Fields 9, 237–248 (1996)

    Article  Google Scholar 

  17. P. Russer, U. Siart, (eds.) Time-Domain Methods in Modern Engineering Electromagnetics, A Tribute to Wolfgang J.R. Hoefer, 1st edn. Springer Proceedings in Physics, vol. 121 (Springer, 2008)

    Google Scholar 

  18. P. Russer, M. Righi, C. Eswarappa, W.J. Hoefer, Lumped element equivalent circuit parameter extraction of distributed microwave circuits via TLM simulation, in 1994 International Microwave Symposium Digest. San Diego, CA, USA, 1994, pp. 887–890

    Google Scholar 

  19. T. Mangold, P. Russer, Full-wave modeling and automatic equivalent-circuit generation of millimeter-wave planar and multilayer structures. IEEE Trans. Microw. Theory Tech. 47(6), 851–858 (1999)

    Article  Google Scholar 

  20. P. Poman, H. Du, W.J. Hoefer, Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks. IEEE Trans. Microw. Theory Tech. 53(4), 1496–1505 (2005)

    Article  Google Scholar 

  21. C. Christopoulos, P. Russer, Application of TLM to EMC problems. in Applied Computational Electromagnetics, NATO ASI Series. (Springer, Berlin, 2000), pp. 324–350

    Google Scholar 

  22. L. Pierantoni, S. Lindenmeier, P. Russer, A combination of integral equation method and FD/TLM method for efficient solution of emc problems. in Microwave Conference and Exhibition, 1997 27th European (1997), pp. 937–942

    Google Scholar 

  23. L. Pierantoni, G. Cerri, S. Lindenmeier, P. Russer, Theoretical and numerical aspects of the hybrid MoM-FDTD, TLM-IE and ARB methods for the efficient modelling of EMC problems. in Proceedings of the 29th European Microwave Conference (Munich, 1999), pp. 313–316

    Google Scholar 

  24. S. Lindenmeier, L. Pierantoni, P. Russer, Hybrid space discretizing-integral equation methods for numerical modeling of transient interference. IEEE Trans. Electromagn. Compat. 41(4), 425–430 (1999)

    Article  Google Scholar 

  25. R. Khlifi, P. Russer, Hybrid space-discretizing method–method of moments for the analysis of transient interference. IEEE Trans. Microw. Theory Tech. 54(12), 4440–4447 (2006)

    Article  Google Scholar 

  26. R. Khlifi, P. Russer, A hybrid method combining TLM and mom method for efficient analysis of scattering problems. in 2006 International Microwave Symposium Digest. San Francisco, CA, USA, 2006, pp. 161–164

    Google Scholar 

  27. N. Fichtner P. Russer, A total-field/scattered-field technique applied for the TLM-integral equation method, in IEEE MTT-S International Microwave Symposium digest, 2009. MTT ‘09. IEEE (2009) pp. 325–328

    Google Scholar 

  28. N. Fichtner, P. Russer, A hybrid TLM-integral equation method using time-domain plane-waves for shielding effectiveness computations. in 26th Annual Review of Progress in Applied Computational Electromagnetics (ACES) (Tampere, Finland, 2010)

    Google Scholar 

  29. N. Fichtner, P. Russer, An accelerated hybrid TLM-IE method for the investigation of shielding effectiveness. Adv. Radio Sci. 8, 13–18 (2010)

    Article  Google Scholar 

  30. J.A. Russer P. Russer, An efficient method for computer aided analysis of noisy electromagnetic fields. in Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International. IEEE, 2011, pp. 1–4

    Google Scholar 

  31. J. Russer, P. Russer, Network methods applied to the computation of stochastic electromagnetic fields. in 2011 International Conference on Electromagnetics in Advanced Applications (ICEAA). (IEEE, 2011), pp. 1152–1155

    Google Scholar 

  32. E.P.Wigner, The unreasonable effectiveness of mathematics in the natural sciences. Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Commun. Pure Appl. Math. 13(1), 1–14 (1960)

    Google Scholar 

  33. R.S. Elliott, Electromagnetics—History, Theory, and Applications (IEEE Press, New York, 1991

    Google Scholar 

  34. H. Hertz, Gesammelte Werke, Untersuchungen über die Ausbreitung der elektrischen Kraft, vol. 2 (Johann Ambrosius Barth, Leipzig, 1894)

    Google Scholar 

  35. F. Wilczek, in A Piece of Magic—the Dirac Equation, ed. by G. Farmelo. It must be beautiful—Great Equations of Modern Science. (Granta Books, New York, London, 2002), pp. 102–130

    Google Scholar 

  36. A. Sommerfeld, Über die Ausbreitung der Wellen in der Drahtlosen Telegraphie. Ann. Physik 28, 665–737 (1909)

    Article  MATH  Google Scholar 

  37. A. Sommerfeld, Partielle Differentialgleichungen der Physik (Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1947)

    Google Scholar 

  38. L.B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice Hall, Englewood Cliffs, 1972

    Google Scholar 

  39. R. Collin, Field Theory of Guided Waves, 2nd edn. (IEEE Press, Inc., New York, 1991)

    Google Scholar 

  40. R.E. Collin, The role of analysis in an age of computers: view from the analytical side. IEEE Antennas Propag. Mag. 32(4), 27–31 (1988)

    Article  Google Scholar 

  41. M.B. Steer, J.W. Bandler, C.M. Snowden, Computer-aided design of RF and microwave circuits and systems. IEEE Trans. Microw. Theory Tech. 50(3), 996–1005 (2002)

    Article  Google Scholar 

  42. R.F. Harrington, Field Computation by Moment Methods (IEEE Press, San Francisco 1968)

    Google Scholar 

  43. K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  44. T. Weiland, A discretization method for the solution of Maxwell’s equations for six-component fields. Electron. Commun. (AEU) 31, 116–120 (1977)

    Google Scholar 

  45. C. Huygens, Traité de la lumière: où sont expliquées les causes de ce qui luy arrive dans la reflexion, & dans la refraction, et particulièrement dans l’étrange refraction du Cristal d’Islande (Pierre Vander Aa, Leyden, 1690)

    Google Scholar 

  46. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1998)

    Google Scholar 

  47. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 2 (Oxford University Press, New York, 1998)

    Google Scholar 

  48. H. Hertz, Über Strahlen electrischer Kraft. Ann. Phys. Chem. Folge 36, 3(4), 769–783 (1889)

    Google Scholar 

  49. J.A. Russer, W.J. Hoefer, A TLM algorithm simulator for the visualization of time discrete electromagnetic processes, in Proceedings of the Second International Conference on Computation in Electromagnetics (London, 1994), pp. 120–122

    Google Scholar 

  50. S. Hein, Consistent finite difference modelling of Maxwell’s equations with lossy symmetrical condensed TLM node. Int. J. Numer. Model. Electron. Netw. Devices Fields 6, 207–220 (1993)

    Article  MathSciNet  Google Scholar 

  51. M. Krumpholz, P. Russer, A field theoretical derivation TLM. IEEE Trans. Microw. Theory Tech. 42(9), 1660–1668 (1994)

    Article  Google Scholar 

  52. M. Aidam, P. Russer, Derivation of the transmission line matrix method by finite integration. AEÜ Int. J. Electron. Commun. 51, 35–39 (1997)

    Google Scholar 

  53. P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering, 2nd edn. (Artech House, Boston, 2006)

    Google Scholar 

  54. V. Belevitch, Summary of the history of circuit theory. Proc. IRE 50(5), 848–855 (1962)

    Article  Google Scholar 

  55. V. Belevitch, Classical Network Theory (Holden-Day, San Francisco, 1968)

    Google Scholar 

  56. A. Davis, On the axiomatic foundations of circuit theory. in International Symposium on Circuits and Systems, ISCAS 2001, vol. 2 (IEEE, 2001), pp. 783–786

    Google Scholar 

  57. M. Krumpholz, P. Russer, A field theoretical derivation of TLM. IEEE Trans. Microw. Theory Tech. 42(9), 1660–1668 (1994)

    Article  Google Scholar 

  58. P. Russer, M. Krumpholz, The Hilbert space formulation of the TLM method. Int. J. Numer. Model. Electron. Netw. Devices Fields 6(1), 29–45 (1993)

    Article  MathSciNet  Google Scholar 

  59. J. Mlakar, Lumped circuit symmetrical TLM node. Electron. Lett. 28(5), 497–498 (1992)

    Article  Google Scholar 

  60. J. Mlakar, D. Kostevc, Direct calculation of scattering parameters of SCN node. Electron. Lett. 34(5), 468–469 (1998)

    Article  Google Scholar 

  61. S. Lindenmeier, P. Russer, The alternating rotated TLM scheme (ARTLM) for fast simulations in time domain. in Proceedings of the 26 h European Microwave Conference (Prague, 1996), pp. 493–496

    Google Scholar 

  62. P. Russer, The alternating rotated transmission line matrix (ARTLM) scheme. Electromagnetics 16(5), 537–551 (1996)

    Article  Google Scholar 

  63. L. Ljung, System Identification. Theory for the User. (Prentice Hall PTR, Upper Saddle River, 1999)

    Google Scholar 

  64. C. E. Baum, The singularity expansion method in transient electro-magnetic fields. in Transient Electromagnetic Fields, L. B. Felsen, Ed. Berlin: Springer, 1976

    Google Scholar 

  65. W. Cauer, Theorie der linearen Wechselstromschaltungen (Akademie-Verlag, Berlin, 1954)

    Google Scholar 

  66. P. Russer, M. Mongiardo, L.B. Felsen, Electromagnetic field representations and computations in complex structures III: network representations of the connection and subdomain circuits. Int. J. Numer. Model. Electron. Netw. Devices Fields 15, 127–145 (2002)

    Article  MATH  Google Scholar 

  67. L.B. Felsen, M. Mongiardo, P. Russer, Electromagnetic Field Computation by Network Methods. (Springer, New York, 2009)

    Google Scholar 

  68. L. Chu, Physical limitations of omni-directional antennas. J. Appl. Phys. 19(12), 1163–1175 (1948)

    Article  Google Scholar 

  69. R.F. Harrington, Time Harmonic Electromagnetic Fields. (McGraw-Hill, New York, 1961)

    Google Scholar 

  70. O. Brune, Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency. J. Math. Phys. 10(3), 191–236 (1931)

    MATH  MathSciNet  Google Scholar 

  71. E.A. Guillemin, Synthesis of Passive Networks. (Wiley, New York, 1957)

    Google Scholar 

  72. F. Mukhtar, J. Russer, Y. Kuznetsov, P. Russer, Methodology for generation of Brune’s equivalent circuit models for linear passive reciprocal multi-ports. in 2012 International Conference on Electromagnetics in Advanced Applications (ICEAA) (2012), pp. 674–677

    Google Scholar 

  73. Y. Kuznetsov, A. Baev, T. Shevgunov, U. Siart, H. Yordanov, P. Russer, Generation of network models for planar microwave circuits by system identification methods. in International Conference on Electromagnetics in Advanced Applications, 2009. ICEAA’09 (2009), pp. 966–969

    Google Scholar 

  74. J.A. Russer, F. Mukhtar, A. Gorbunova, A. Baev, Y.V. Kuznetsov, P. Russer, Brune’s algorithm for circuit synthesis. in IEEE MTT-S International Microwave Symposium Digest (MTT), 2013 .Seattle, 2013, pp. 1–4

    Google Scholar 

  75. F. Mukhtar, P. Russer, A Brune’s two–port process applied to lumped element filter modeling. in IEEE MTT-S International Microwave Symposium Digest (MTT), 2013. Seattle, 2013, pp. 1–3

    Google Scholar 

  76. F. Mukhtar, P. Russer, Brune’s multiport lumped element equivalent circuits in admittance representation. in 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) (2013), pp. 964–967

    Google Scholar 

  77. F. Mukhtar, P. Russer, Brune’s multiport lumped element equivalent circuits in admittance representation. in Paper Submitted for 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) (Torino, Italy, 2013), pp. 1–4

    Google Scholar 

  78. J. M. Smith, Mathematical Modeling and Digital Simulation for Engineers and Scientists, 2nd edn. (John Wiley & Sons, New York, 1987)

    Google Scholar 

  79. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, 2nd edn. Signal Processing Series. (Prentice-Hall, 1989)

    Google Scholar 

  80. P. Russer, Network methods applied to computational electromagnetics, in Proceedings of the 9th International Conference on Telecommunication in Modern Satellite, Cable, and Broadcasting Services, 2009. TELSIKS ‘09 (2009), pp. 329–338

    Google Scholar 

  81. P. Russer, Overview over network methods applied to electromagnetic field computation. in ICEAA 2009, International Conference on on Electromagnetics in Advanced Applications (Torino, Italy, 2009), pp. 276–279

    Google Scholar 

  82. J.A. Russer, Y. Kuznetsov, P. Russer, Discrete-time network and state equation methods applied to computational electromagnetics Mikrotalasna Revija (Microwave Review), pp. 2–14 (2010)

    Google Scholar 

  83. P. Richards, Resistor-transmission-line circuits. Proc. IRE 36(2), 217–220 (1948)

    Article  Google Scholar 

  84. P. Lorenz, The Transmission Line Matrix Multipole Expansion (TLM-ME) Method. in 2006 IEEE MTT-S International Microwave Symposium, Workshop WFE, Advanced Methods for EM Computing, San Francisco, USA (2006)

    Google Scholar 

  85. J.J. Wang, Generalized Moment Methods in Electromagnetics (Wiley, New York, 1991)

    Google Scholar 

  86. J. Russer, P. Russer, Stochastic electromagnetic fields. in Microwave Conference (GeMIC), 2011 German (IEEE, 2011), pp. 1–4

    Google Scholar 

  87. J.V. Bladel, Electromagnetic Fields, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  88. J.A. Russer, G. Scarpa, P. Lugli, P. Russer, On the modeling of radiated EMI on the basis of near-field correlation measurements. in European Microwave Conference (EuMC) (Manchester, 2011), pp. 9–12

    Google Scholar 

  89. P. Russer, J.A. Russer, Modeling and measurement of stochastic electromagnetic fields in EMI. in Proceedings of Asia-Pacific Symposium on Electromagnetic Compatibility APEMC (Singapore, 2012)

    Google Scholar 

  90. J. Russer, T. Asenov, P. Russer, Sampling of stochastic electromagnetic fields. in IEEE MTT-S International Microwave Symposium Digest (MTT) (2012), pp. 1–3

    Google Scholar 

  91. A. Baev, A. Gorbunova, M. Konovalyuk, J.A. Russer, Y. Kuznetsov, Planar stochastic sources localization algorithm in EMC problems. in 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) (Torino, Italy, 2013), pp. 1–4

    Google Scholar 

Download references

Acknowledgements

This article is based on research projects funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Russer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Russer, P., Russer, J.A. (2015). Some Remarks on the Transmission Line Matrix (TLM) Method and Its Application to Transient EM Fields and to EMC Problems. In: Ahmed, I., Chen, Z. (eds) Computational Electromagnetics—Retrospective and Outlook. Springer, Singapore. https://doi.org/10.1007/978-981-287-095-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-095-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-094-0

  • Online ISBN: 978-981-287-095-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics