Book Volume 265 2012

Unbounded Self-adjoint Operators on Hilbert Space

Authors:

ISBN: 978-94-007-4752-4 (Print) 978-94-007-4753-1 (Online)

Table of contents (16 chapters)

  1. Front Matter

    Pages I-XX

  2. Basics of Closed Operators

    1. Front Matter

      Pages 1-1

    2. Chapter

      Pages 3-23

      Closed and Adjoint Operators

    3. Chapter

      Pages 25-36

      The Spectrum of a Closed Operator

    4. Chapter

      Pages 37-57

      Some Classes of Unbounded Operators

  3. Spectral Theory

    1. Front Matter

      Pages 59-59

    2. Chapter

      Pages 61-84

      Spectral Measures and Spectral Integrals

    3. Chapter

      Pages 85-114

      Spectral Decompositions of Self-adjoint and Normal Operators

  4. Special Topics

    1. Front Matter

      Pages 115-115

    2. Chapter

      Pages 117-135

      One-Parameter Groups and Semigroups of Operators

    3. Chapter

      Pages 137-164

      Miscellanea

  5. Perturbations of Self-adjointness and Spectra

    1. Front Matter

      Pages 165-165

    2. Chapter

      Pages 167-187

      Perturbations of Self-adjoint Operators

    3. Chapter

      Pages 189-218

      Trace Class Perturbations of Spectra of Self-adjoint Operators

  6. Forms and Operators

    1. Front Matter

      Pages 219-219

    2. Chapter

      Pages 221-250

      Semibounded Forms and Self-adjoint Operators

    3. Chapter

      Pages 251-263

      Sectorial Forms and m-Sectorial Operators

    4. Chapter

      Pages 265-280

      Discrete Spectra of Self-adjoint Operators

  7. Self-adjoint Extension Theory of Symmetric Operators

    1. Front Matter

      Pages 281-281

    2. Chapter

      Pages 283-306

      Self-adjoint Extensions: Cayley Transform and Krein Transform

    3. Chapter

      Pages 307-341

      Self-adjoint Extensions: Boundary Triplets

    4. Chapter

      Pages 343-362

      Sturm–Liouville Operators

    5. Chapter

      Pages 363-392

      The One-Dimensional Hamburger Moment Problem

  8. Back Matter

    Pages 393-432