Numerical and Symbolic Scientific Computing

Progress and Prospects

Editors:

ISBN: 978-3-7091-0793-5 (Print) 978-3-7091-0794-2 (Online)

Table of contents (14 chapters)

  1. Front Matter

    Pages i-viii

  2. No Access

    Book Chapter

    Pages 1-19

    Approximate Implicitization of Space Curves

  3. No Access

    Book Chapter

    Pages 21-44

    Sparsity Optimized High Order Finite Element Functions on Simplices

  4. No Access

    Book Chapter

    Pages 45-63

    Fast Solvers and A Posteriori Error Estimates in Elastoplasticity

  5. No Access

    Book Chapter

    Pages 65-94

    A Symbolic-Numeric Algorithm for Genus Computation

  6. No Access

    Book Chapter

    Pages 95-104

    The “Seven Dwarfs” of Symbolic Computation

  7. No Access

    Book Chapter

    Pages 105-121

    Computer Algebra Meets Finite Elements: An Efficient Implementation for Maxwell’s Equations

  8. No Access

    Book Chapter

    Pages 123-156

    A Symbolic Approach to Generation and Analysis of Finite Difference Schemes of Partial Differential Equations

  9. No Access

    Book Chapter

    Pages 157-174

    White Noise Analysis for Stochastic Partial Differential Equations

  10. No Access

    Book Chapter

    Pages 175-191

    Smoothing Analysis of an All-at-Once Multigrid Approach for Optimal Control Problems Using Symbolic Computation

  11. No Access

    Book Chapter

    Pages 193-218

    Analytical Evaluations of Double Integral Expressions Related to Total Variation

  12. No Access

    Book Chapter

    Pages 219-256

    Sound and Complete Verification Condition Generator for Functional Recursive Programs

  13. No Access

    Book Chapter

    Pages 257-271

    An Introduction to Automated Discovery in Geometry through Symbolic Computation

  14. No Access

    Book Chapter

    Pages 273-331

    Symbolic Analysis for Boundary Problems: From Rewriting to Parametrized Gröbner Bases

  15. No Access

    Book Chapter

    Pages 333-358

    Linear Partial Differential Equations and Linear Partial Differential Operators in Computer Algebra