Volume 305 2013

Hypoelliptic Laplacian and Bott–Chern Cohomology

A Theorem of Riemann–Roch–Grothendieck in Complex Geometry

Authors:

ISBN: 978-3-319-00127-2 (Print) 978-3-319-00128-9 (Online)

Table of contents (12 chapters)

  1. Front Matter

    Pages i-xv

  2. No Access

    Book Chapter

    Pages 1-13

    Introduction

  3. No Access

    Book Chapter

    Pages 15-20

    The Riemannian adiabatic limit

  4. No Access

    Book Chapter

    Pages 21-39

    The holomorphic adiabatic limit

  5. No Access

    Book Chapter

    Pages 41-61

    The elliptic superconnections

  6. No Access

    Book Chapter

    Pages 63-81

    The elliptic superconnection forms

  7. No Access

    Book Chapter

    Pages 83-90

    The elliptic superconnections forms when ${\bar\partial}^{M} {\partial^{M}} \omega^{M} = 0$

  8. No Access

    Book Chapter

    Pages 91-112

    The hypoelliptic superconnections

  9. No Access

    Book Chapter

    Pages 113-121

    The hypoelliptic superconnection forms

  10. No Access

    Book Chapter

    Pages 123-144

    The hypoelliptic superconnection forms of vector bundles

  11. No Access

    Book Chapter

    Pages 145-157

    The hypoelliptic superconnection forms when ${\bar\partial}^{M} {\partial^{M}} \omega^{M} = 0$

  12. No Access

    Book Chapter

    Pages 159-164

    The exotic superconnection forms of a vector bundle

  13. No Access

    Book Chapter

    Pages 165-189

    Exotic superconnections and Riemann-Roch-Grothendieck

  14. Back Matter

    Pages 191-203