Recent Trends in Dynamical Systems

Proceedings of a Conference in Honor of Jürgen Scheurle

  • Andreas Johann
  • Hans-Peter Kruse
  • Florian Rupp
  • Stephan Schmitz
Conference proceedings

DOI: 10.1007/978-3-0348-0451-6

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 35)

Table of contents (23 papers)

  1. Front Matter
    Pages i-xxv
  2. Stability, Bifurcation and Perturbations

  3. Hamiltonian Dynamics, Geometric Mechanics and Control Theory

    1. Front Matter
      Pages 265-265
    2. Singular Solutions of Euler–Poincaré Equations on Manifolds with Symmetry
      D. D. Holm, J. Munn, S. N. Stechmann
      Pages 267-316
    3. On the Destruction of Resonant Lagrangean Tori in Hamiltonian Systems
      Henk W. Broer, Heinz Hanßmann, Jiangong You
      Pages 317-333
    4. Deformation of Geometry and Bifurcations of Vortex Rings
      James Montaldi, Tadashi Tokieda
      Pages 335-370
    5. Gradient Flows in the Normal and Kähler Metrics and Triple Bracket Generated Metriplectic Systems
      Anthony M. Bloch, Philip J. Morrison, Tudor S. Ratiu
      Pages 371-415
    6. Boundary Tracking and Obstacle Avoidance Using Gyroscopic Control
      Fumin Zhang, Eric W. Justh, P. S. Krishnaprasad
      Pages 417-446
    7. Random Hill’s Equations, Random Walks, and Products of Random Matrices
      Fred C. Adams, Anthony M. Bloch, Jeffrey C. Lagarias
      Pages 447-470

About these proceedings

Introduction

This book presents the proceedings of a conference on dynamical systems held in honor of Jürgen Scheurle in January 2012. Through both original research papers and survey articles leading experts in the field offer overviews of the current state of the theory and its applications to mechanics and physics. In particular, the following aspects of the theory of dynamical systems are covered: 

- Stability and bifurcation
- Geometric mechanics and control theory
- Invariant manifolds, attractors and chaos
- Fluid mechanics and elasticity
- Perturbations and multiscale problems
- Hamiltonian dynamics and KAM theory​

Researchers and graduate students in dynamical systems and related fields, including engineering, will benefit from the articles presented in this volume.

Contributors:

Fred C. Adams
Henk W. Broer
Anthony M. Bloch
Tomas Caraballo
David R.J. Chillingworth
Freddy Dumortier
Messoud Efendiev
Tor Flå
Peter A. Giesl
Christoph Glocker
Alexandra Goeke
John Guckenheimer
Sigurdur Hafstein
Heinz Hanßmann
Darryl D. Holm
Hany  A. Hosham
Eric W. Justh
Peter E. Kloeden
P. S. Krishnaprasad
Martin Kružík
Tassilo Küpper
Alexander Mielke
James Montaldi
Philip J. Morrison
Jonathan Munn
Arne B. Nordmark
Marius Paicu
Tudor S. Ratiu
Geneviève Raugel
Sebastian Reich
Michael Renardy
Florian H.-H. Rupp
Björn Sandstede
Samuel N. Stechmann
Tadashi Tokieda
André Vanderbauwhede
Sebastian Walcher
Daniel Weiss
Clemens Woywod
Jiangong You
Fumin Zhang
Anna Zhigun
Johannes Zimmer

Keywords

Dynamical Systems Fluid mechanics Invariant manifolds

Editors and affiliations

  • Andreas Johann
    • 1
  • Hans-Peter Kruse
    • 2
  • Florian Rupp
    • 3
  • Stephan Schmitz
    • 4
  1. 1.Zentrum MathematikTechnische Universität MünchenGarching bei MünchenGermany
  2. 2.Zentrum MathematikTechnische Universität MünchenGarching bei MünchenGermany
  3. 3.Zentrum MathematikTechnische Universität MünchenGarching bei MünchenGermany
  4. 4.Zentrum MathematikTechnische Universität MünchenGarching bei MünchenGermany

Bibliographic information

  • Copyright Information Springer Basel 2013
  • Publisher Name Springer, Basel
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-0348-0450-9
  • Online ISBN 978-3-0348-0451-6
  • Series Print ISSN 2194-1009
  • Series Online ISSN 2194-1017