Attractors for infinite-dimensional non-autonomous dynamical systems

Authors:

ISBN: 978-1-4614-4580-7 (Print) 978-1-4614-4581-4 (Online)

Table of contents (16 chapters)

  1. Front Matter

    Pages i-xxxvi

  2. Abstract theory

    1. Front Matter

      Pages 1-1

    2. No Access

      Book Chapter

      Pages 3-22

      The pullback attractor

    3. No Access

      Book Chapter

      Pages 23-53

      Existence results for pullback attractors

    4. No Access

      Book Chapter

      Pages 55-70

      Continuity of attractors

    5. No Access

      Book Chapter

      Pages 71-102

      Finite-dimensional attractors

    6. No Access

      Book Chapter

      Pages 103-139

      Gradient semigroups and their dynamical properties

  3. Invariant manifolds of hyperbolic solutions

    1. Front Matter

      Pages 141-141

    2. No Access

      Book Chapter

      Pages 143-186

      Semilinear differential equations

    3. No Access

      Book Chapter

      Pages 187-222

      Exponential dichotomies

    4. No Access

      Book Chapter

      Pages 223-251

      Hyperbolic solutions and their stable and unstable manifolds

  4. Applications

    1. Front Matter

      Pages 253-253

    2. No Access

      Book Chapter

      Pages 255-263

      A non-autonomous competitive Lotka–Volterra system

    3. No Access

      Book Chapter

      Pages 265-279

      Delay differential equations

    4. No Access

      Book Chapter

      Pages 281-300

      The Navier–Stokes equations with non-autonomous forcing

    5. No Access

      Book Chapter

      Pages 301-315

      Applications to parabolic problems

    6. No Access

      Book Chapter

      Pages 317-338

      A non-autonomous Chafee–Infante equation

    7. No Access

      Book Chapter

      Pages 339-359

      Perturbation of diffusion and continuity of global attractors with rate of convergence

    8. No Access

      Book Chapter

      Pages 361-376

      A non-autonomous damped wave equation

    9. No Access

      Book Chapter

      Pages 377-391

      Appendix: Skew-product flows and the uniform attractor

  5. Back Matter

    Pages 393-409