Progress on Meshless Methods

ISBN: 978-1-4020-8820-9 (Print) 978-1-4020-8821-6 (Online)

Table of contents (17 chapters)

  1. Front Matter

    Pages i-xii

  2. Chapter

    Pages 1-16

    Particular Solution of Poisson Problems Using Cardinal Lagrangian Polyharmonic Splines

  3. Chapter

    Pages 17-35

    A Meshless Solution to the p-Laplace Equation

  4. Chapter

    Pages 37-56

    Localized Radial Basis Functions with Partition of Unity Properties

  5. Chapter

    Pages 57-75

    Preconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation

  6. Chapter

    Pages 77-83

    Arbitrary Precision Computations of Variations of Kansa's Method

  7. Chapter

    Pages 85-98

    A Meshless Approach for the Analysis of Orthotropic Shells Using a Higher-Order Theory and an Optimization Technique

  8. Chapter

    Pages 99-124

    An Order-N Complexity Meshless Algorithm Based on Local Hermitian Interpolation

  9. Chapter

    Pages 125-139

    On the Determination of a Robin Boundary Coefficient in an Elastic Cavity Using the MFS

  10. Chapter

    Pages 141-158

    Several Meshless Solution Techniques for the Stokes Flow Equations

  11. Chapter

    Pages 159-173

    Orbital HP-Clouds for Quantum Systems

  12. Chapter

    Pages 175-198

    The Radial Natural Neighbours Interpolators Extended to ElastoplastiCity

  13. Chapter

    Pages 199-216

    Static and Damage Analyses of Shear Deformable Laminated Composite Plates Using the Radial Point Interpolation Method

  14. Chapter

    Pages 217-236

    Analysis of Tensile Structures with the Element Free Galerkin Method

  15. Chapter

    Pages 237-257

    Towards an Isogeometric Meshless Natural Element Method

  16. Chapter

    Pages 259-272

    A Partition of Unity-Based Multiscale Method

  17. Chapter

    Pages 273-290

    Application of Smoothed Particle Hydrodynamics Method in Engineering Problems

  18. Chapter

    Pages 291-305

    Visualization of Meshless Simulations Using Fourier Volume Rendering