2009

How Does One Cut a Triangle?

Authors:

ISBN: 978-0-387-74650-0 (Print) 978-0-387-74652-4 (Online)

Table of contents (16 chapters)

  1. Front Matter

    Pages 1-25

  2. The Original Book

    1. Front Matter

      Pages 1-1

    2. No Access

      Book Chapter

      Pages 3-13

      A Pool Table, Irrational Numbers, and Integral Independence

    3. No Access

      Book Chapter

      Pages 15-23

      How Does One Cut a Triangle? I

    4. No Access

      Book Chapter

      Pages 25-36

      Excursions in Algebra

    5. No Access

      Book Chapter

      Pages 37-39

      How Does One Cut a Triangle? II

    6. No Access

      Book Chapter

      Pages 41-45

      Excursion in Trigonometry

    7. No Access

      Book Chapter

      Pages 47-50

      Is There Anything Beyond the Solution?

    8. No Access

      Book Chapter

      Pages 51-63

      Pursuit of the Best Result

    9. No Access

      Book Chapter

      Pages 65-106

      Convex Figures and the Function S(F)

    10. No Access

      Book Chapter

      Pages 107-120

      Paul Erdős: Our Joint Problems

    11. No Access

      Book Chapter

      Pages 121-124

      Convex Figures and Erdőos’ Function S α (F)

  3. Developments of the Subsequent 20 Years

    1. Front Matter

      Pages 126-126

    2. No Access

      Book Chapter

      Pages 127-128

      An Alternative Proof of Grand Problem II

    3. No Access

      Book Chapter

      Pages 129-135

      Miklós Laczkovich on Cutting Triangles

    4. No Access

      Book Chapter

      Pages 137-142

      Matthew Kahle on the Five-Point Problem

    5. No Access

      Book Chapter

      Pages 143-145

      Soifer’s One-Hundred-Dollar Problem and Mitya Karabash

    6. No Access

      Book Chapter

      Pages 147-156

      Coffee Hour and the Conway–Soifer Cover-Up

    7. No Access

      Book Chapter

      Pages 157-159

      Farewell to the Reader

  4. Back Matter

    Pages 1-13