Table of contents

  1. Front Matter
  2. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 1-16
  3. Daniel J. Bernstein
    Pages 27-34
  4. Richard P. Brent, Alfred J. van der Poorten, Herman J. J. te Riele
    Pages 35-47
  5. H. Cohen, F. Diaz y Diaz, M. Olivier
    Pages 49-57
  6. Jean-Marc Couveignes
    Pages 59-65
  7. M. Daberkow, M. E. Pohst
    Pages 67-74
  8. Thomas F. Denny, Volker Müller
    Pages 75-90
  9. Marije Elkenbracht-Huizing
    Pages 99-114
  10. Bríd ní Fhlathúin
    Pages 121-131
  11. C. Fieker, M. E. Pohst
    Pages 133-139
  12. Josef Gebel, Attila Pethő, Horst G. Zimmer
    Pages 157-171

About these proceedings

Introduction

This book constitutes the refereed post-conference proceedings of the Second International Algorithmic Number Theory Symposium, ANTS-II, held in Talence, France in May 1996.
The 35 revised full papers included in the book were selected from a variety of submissions. They cover a broad spectrum of topics and report state-of-the-art research results in computational number theory and complexity theory. Among the issues addressed are number fields computation, Abelian varieties, factoring algorithms, finite fields, elliptic curves, algorithm complexity, lattice theory, and coding.

Keywords

Algorithmische Zahlentheorie Algorithms Computational Number Theory Constructive Mathematics Komplexitätstheorie Numbertheoretical Algorithms Zahlentheoretische Algorithmen algorithm complexity complexity theory finite field number theory

Bibliographic information

  • Copyright Information Springer-Verlag 1996
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-61581-1
  • Online ISBN 978-3-540-70632-8
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349