Automated Deduction in Geometry

Third InternationalWorkshop, ADG 2000 Zurich, Switzerland, September 25–27, 2000 Revised Papers

  • Jürgen Richter-Gebert
  • Dongming Wang
Conference proceedings ADG 2000

DOI: 10.1007/3-540-45410-1

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2061)

Table of contents (17 papers)

  1. Front Matter
    Pages I-VIII
  2. On Spatial Constraint Solving Approaches
    Christoph M. Hoffmann, Bo Yuan
    Pages 1-15
  3. A Hybrid Method for Solving Geometric Constraint Problems
    Xiao-Shan Gao, Lei-Dong Huang, Kun Jiang
    Pages 16-25
  4. Solving the Birkhoff Interpolation Problem via the Critical Point Method: An Experimental Study
    Fabrice Rouillier, Mohab Safey El Din, Éric Schost
    Pages 26-40
  5. Algebraic and Semialgebraic Proofs: Methods and Paradoxes
    Pasqualina Conti, Carlo Traverso
    Pages 83-103
  6. Remarks on Geometric Theorem Proving
    Laura Bazzotti, Giorgio Dalzotto, Lorenzo Robbiano
    Pages 104-128
  7. The Kinds of Truth of Geometry Theorems
    Michael Bulmer, Desmond Fearnley-Sander, Tim Stokes
    Pages 129-142
  8. A Complex Change of Variables for Geometrical Reasoning
    Tim Stokes, Michael Bulmer
    Pages 143-153
  9. Decision Complexity in Dynamic Geometry
    Ulrich Kortenkamp, Jürgen Richter-Gebert
    Pages 193-198
  10. Qubit Logic, Algebra and Geometry
    Timothy F. Havel
    Pages 228-245
  11. Nonstandard Geometric Proofs
    Jacques D. Fleuriot
    Pages 246-267
  12. Emphasizing Human Techniques in Automated Geometry Theorem Proving: A Practical Realization
    Ricardo Caferra, Nicolas Peltier, François Puitg
    Pages 268-305
  13. Higher-Order Intuitionistic Formalization and Proofs in Hilbert’s Elementary Geometry
    Christophe Dehlinger, Jean-François Dufourd, Pascal Schreck
    Pages 306-323
  14. Back Matter
    Pages 325-325

About these proceedings


Automat Computer Vision Computer-Aided Design Formal Verification Geometric Deduction Geometric Design Geometric Modeling Geometric Problem Solving Theorem Proving automated deduction proving

Editors and affiliations

  • Jürgen Richter-Gebert
    • 1
  • Dongming Wang
    • 2
  1. 1.Zentrum Mathematik, SB4Technische Universität MünchenMünchenGermany
  2. 2.Laboratoire d’Informatique de Paris 6Université Pierre et Marie Curie — CNRSParis Cedex 05France

Bibliographic information

  • Copyright Information Springer-Verlag Berlin Heidelberg 2001
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-42598-4
  • Online ISBN 978-3-540-45410-6
  • Series Print ISSN 0302-9743