Intuition and the Axiomatic Method

Editors:

ISBN: 978-1-4020-4039-9 (Print) 978-1-4020-4040-5 (Online)

Table of contents (14 chapters)

  1. Mathematical Aspects

    1. Front Matter

      Pages 1-1

    2. No Access

      Book Chapter

      Pages 3-19

      Locke and Kant on Mathematical Knowledge

    3. No Access

      Book Chapter

      Pages 21-46

      The View from 1763: Kant on the Arithmetical Method Before Intuition

    4. No Access

      Book Chapter

      Pages 47-66

      The Relation of Logic and Intuition in Kant’S Philosophy of Science, Particularly Geometry

    5. No Access

      Book Chapter

      Pages 67-85

      Edmund Husserl on the Applicability of Formal Geometry

    6. No Access

      Book Chapter

      Pages 87-112

      The Neo-Fregean Program in the Philosophy of Arithmetic

    7. No Access

      Book Chapter

      Pages 113-131

      Gödel, Realism and Mathematical ‘Intuition’

    8. No Access

      Book Chapter

      Pages 133-153

      Intuition, Objectivity and Structure

  2. Physical Aspects

    1. Front Matter

      Pages 155-155

    2. No Access

      Book Chapter

      Pages 157-180

      Intuition and Cosmology: The Puzzle of Incongruent Counterparts

    3. No Access

      Book Chapter

      Pages 181-211

      Conventionalism and Modern Physics: A Re-Assessment

    4. No Access

      Book Chapter

      Pages 213-233

      Intuition and the Axiomatic Method in Hilbert’s Foundation of Physics

    5. No Access

      Book Chapter

      Pages 235-249

      Soft Axiomatisation: John von Neumann on Method and von Neumann’s Method in the Physical Sciences

    6. No Access

      Book Chapter

      Pages 251-266

      The Intuitiveness and Truth of Modern Physics

    7. No Access

      Book Chapter

      Pages 267-292

      Functions of Intution in Quantum Physics

    8. No Access

      Book Chapter

      Pages 293-324

      Intuitive Cognition and the Formation of the Theories