Skip to main content
Book cover

Applied Computational Materials Modeling

Theory, Simulation and Experiment

  • Book
  • © 2007

Overview

  • Computational materials modeling is presented as a set of tools available for aiding the materials engineer/scientist
  • Each chapter describes one or more particular computational tool and how they are best used
  • Provides detailed examples of application to real problems
  • Suggests how to acquire the programs (tools) if the software is publicly available
  • Focuses on the integration of the modeling methods within experimental programs
  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (14 chapters)

Keywords

About this book

While it is tempting to label computational materials modeling as an emerging field of research, the truth is that both in nature and foundation, it is just as much an established field as the concepts and techniques that define it. It is the recent enormous growth in computing power and communications that has brought the activity to the forefi-ont, turning it into a possible com­ ponent of any modem materials research program. Together with its increased role and visibility, there is also a dynamic change in the way computational modeling is perceived in such a vast field as materials science with its wide range of length and time scales. As the pace of materials research accelerates and the need for often inaccessible information continues to grow, the de­ mands and expectations on existing modeling techniques have progressed that much faster. Primarily because there is no one technique that can provide all the answers at every length and time scale in materials science, excessive expectations of computational materials modeling should be avoided if pos­ sible. While it is apparent that computational modeling is the most efficient method for dealing with complex systems, it should not be seen as an alter­ native to traditional experimentation. Instead there is another option, which is perhaps the one that is most likely to become the defining characteristic of computational materials modeling.

Editors and Affiliations

  • Ohio Aerospace Institute, Cleveland, USA

    Guillermo Bozzolo

  • NASA Glenn Research Center, Cleveland, USA

    Ronadl D. Noebe, Phillip B. Abel

Bibliographic Information

Publish with us