Skip to main content
Log in

Nonlinear propagation of Electron-acoustic waves in a nonextensive electron-positron-ion plasma

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Electron-acoustic shock waves (EASWs) in an unmagnetized electron-positron-ion plasma system (consisting of a cold mobile viscous electron fluid, hot electrons and positrons following the q-nonextensive distribution, and immobile positive ions) are studied analytically. The Burgers equation is derived by using the well-known reductive perturbation method. The basic features (viz. polarity, amplitude, width, phase speed, etc.) of EASWs are briefly addressed. The basic features of EASWs are found to be significantly modified by the effects of nonextensivity of the hot electrons and positrons, the relative number density and temperature ratios, and the kinematic viscosity of the cold electrons. The present investigation can be useful in understanding the fundamental characteristics of EASWs in various space plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Cattaert, F. Verheest and M. A. Hellberg, Phys. Plasmas 12, 042901 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  2. G. S. Lakhina, A. P. Kakad, S. V. Singh and F. Verheest, Phys. Plasmas 15, 062903 (2008).

    Article  ADS  Google Scholar 

  3. G. S. Lakhina, S. V. Singh, A. P. Kakad,M. L. Goldstein, A. F. Vi˜nas and J. S. Pickett, J. Geophys. Res. 114, A09212 (2009).

    Article  Google Scholar 

  4. R. Pottelette and M. Berthomier, Nonlinear Processes Geophys. 16, 373 (2009).

    Article  ADS  Google Scholar 

  5. A. Mannan and A. A. Mamun, Astrophys. Space Sci. 340, 109 (2012).

    Article  ADS  Google Scholar 

  6. M. Surendra and D. B. Graves, Phys. Rev. Lett. 66, 1469 (1991).

    Article  ADS  Google Scholar 

  7. I. Kourakis and P. K. Shukla, Phys. Rev. E 69, 036411 (2004).

    Article  ADS  Google Scholar 

  8. P. K. Shukla, L. Stenflo and M. Hellberg, Phys. Rev. E 66, 027403 (2002).

    Article  ADS  Google Scholar 

  9. M. Dutta, N. Chakrabarti, R. Roychoudhury and M. Khan, Phys. Plasmas 18, 102301 (2011).

    Article  ADS  Google Scholar 

  10. A. Danehkar, N. S. Saini, M. A. Hellberg and I. Kourakis, Phys. Plasmas 18, 072902 (2011).

    Article  ADS  Google Scholar 

  11. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), p. 763.

    Google Scholar 

  12. H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer-Verlag, Berlin, 1987), p. 202.

    Google Scholar 

  13. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  14. T. Tajima and T. Taniuti, Phys. Rev. A 42, 3587 (1990).

    Article  ADS  Google Scholar 

  15. V. I. Berezhiani, M. Y. El-Ashry and U. A. Mofiz, Phys. Rev. E 50, 448 (1994).

    Article  ADS  Google Scholar 

  16. S. I. Popel, S. V. Vladimirov and P. K. Shukla, Phys. Plasmas 2, 716 (1995).

    Article  ADS  Google Scholar 

  17. Y. N. Nejoh, Aust. J. Phys. 49, 967 (1996).

    Article  ADS  Google Scholar 

  18. H. Alinejad, S. Sobhanian, M. A. Mohammadi and J. Mahmoodi, Czech. J. Phys. 54, C516 (2004).

    Article  Google Scholar 

  19. M. Tribeche, K. Aoutou, S. Younsi and R. Amour, Phys. Plasmas 16, 072103 (2009).

    Article  ADS  Google Scholar 

  20. M. Tribeche, Phys. Plasmas 17, 042110 (2010).

    Article  ADS  Google Scholar 

  21. N. A. El-Bedwehy and W. M. Moslem, Astrophys. Space Sci. 335, 435 (2011).

    Article  ADS  MATH  Google Scholar 

  22. E. F. El-Shamy, W. F. El-Taibany, E. K. El-Shewy and K. H. El-Shorbagy, Astrophys. Space Sci. 338, 279 (2012).

    Article  ADS  Google Scholar 

  23. S. K. Jain and M. K. Mishra, J. Plasma Phys. 79, 661 (2013).

    Article  ADS  Google Scholar 

  24. M. M. Rahman, M. S. Alam and A. A. Mamun, Eur. Phys. J. Plus 129, 84 (2014).

    Article  Google Scholar 

  25. M. M. Rahman, M. S. Alam and A. A. Mamun, Astrophys. Space Sci. 352, 193 (2014).

    Article  ADS  Google Scholar 

  26. M. M. Rahman, M. S. Alam and A. A. Mamun, J. Kor. Phys. Soc. 64, 1828 (2014).

    Article  ADS  Google Scholar 

  27. M. M. Rahman, Positron-acoustic Waves in Nonthermal Electron-positron-ion Plasmas (LAP LAMBERT Academic Publishing, Germany, 2014), ISBN: 978-3-659-62312-7.

    Google Scholar 

  28. S.-S. Ruan and Z. Cheng, Phys. Scr. 88, 015503 (2013).

    Article  ADS  Google Scholar 

  29. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. A. Kopp, A. Schröer, G. T. Birk and P. K. Shukla, Phys. Plasmas 4, 4414 (1997).

    Article  ADS  Google Scholar 

  31. A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Gervino, A. Lavagno and D. Pigato, Cent. Eur. J. Phys. 10, 594 (2012).

    Article  Google Scholar 

  33. A. Lavagno and D. Pigato, Eur. Phys. J. A 47, 52 (2011).

    Article  ADS  Google Scholar 

  34. R. Silva, Jr., A. R. Plastino and J. A. S. Lima, Phys. Lett. A 249, 401 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. J.-N. Han, J.-X. Li, Y.-L. He, Z.-H. Han, G.-X. Dong and Y.-G. Nan, Phys. Plasmas 20, 072109 (2013).

    Article  ADS  Google Scholar 

  36. N. Y. Tanisha, I. Tasnim, S. Sultana, M. Salahuddin and A. A. Mamun, Astrophys. Space Sci. 353, 137 (2014).

    Article  ADS  Google Scholar 

  37. J. A. S. Lima, R. Silva and J. Santos, Phys. Rev. E 61, 3260 (2000).

    Article  ADS  Google Scholar 

  38. A. S. Bains, M. Tribeche and T. S. Gill, Phys. Lett. A 375, 2059 (2011).

    Article  ADS  Google Scholar 

  39. M. Tribeche and P. K. Shukla, Phys. Plasmas 18, 103702 (2011).

    Article  ADS  Google Scholar 

  40. H. R. Pakzad, Phys. Plasmas 18, 082105 (2011).

    Article  ADS  Google Scholar 

  41. H. R. Pakzad, Phys. Scr. 83, 015505 (2011).

    Article  ADS  Google Scholar 

  42. M. Ferdousi, S. Yasmin, S. Ashraf and A. A. Mamun, Astrophys. Space Sci. 352, 579 (2014).

    Article  ADS  Google Scholar 

  43. A. Rafat, M. M. Rahman, M. S. Alam and A. A. Mamun, Commun. Theor. Phys. 63, 243 (2015).

    Article  ADS  Google Scholar 

  44. E. I. El-Awady and W. M. Moslem, Phys. Plasmas 18, 082306 (2011).

    Article  ADS  Google Scholar 

  45. A. A. Mamun and P. K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  46. H. K. Andersen, N. D’Angelo, P. Michelsen and P. Nielsen, Phys. Rev. Lett. 19, 149 (1967).

    Article  ADS  Google Scholar 

  47. Y. Nakamura, H. Bailung and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  48. P. K. Shukla, Phys. Plasmas 7, 1044 (2000).

    Article  ADS  Google Scholar 

  49. B. Sahu and R. Roychoudhury, Phys. Plasmas 14, 072310 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  50. W. Masood and H. Rizvi, Phys. Plasmas 17, 052314 (2010).

    Article  ADS  Google Scholar 

  51. M. S. Alam, M. M. Masud and A. A. Mamun, Chin. Phys. B 22, 115202 (2013).

    Article  ADS  Google Scholar 

  52. S. Hussain, H. Ur-Rehman and S. Mahmood, Astrophys. Space Sci. 351, 573 (2014).

    Article  ADS  Google Scholar 

  53. K. A. Roy, P. Misra and P. Chatterjee, Phys. Plasmas 15, 032310 (2008).

    Article  ADS  Google Scholar 

  54. B. Sahu and M. Tribeche, Phys. Plasmas 19, 022304 (2012).

    Article  ADS  Google Scholar 

  55. F. Sayed and A. A. Mamun, Phys. Plasmas 14, 014501 (2007).

    Article  ADS  Google Scholar 

  56. A. Mannan and A. A. Mamun, Phys. Rev. E 84, 026408 (2011).

    Article  ADS  Google Scholar 

  57. M. Tribeche, R. Amour and P. K. Shukla, Phys. Rev. E 85, 037401 (2012).

    Article  ADS  Google Scholar 

  58. S. Yasmin, M. Asaduzzaman and A. A. Mamun, Astrophys. Space Sci. 343, 245 (2013).

    Article  ADS  MATH  Google Scholar 

  59. F. Verheest, Waves in Dusty Plasmas (Kluwer Academic, Dordrecht, 2000).

    Book  Google Scholar 

  60. M. Tribeche and A. Merriche, Phys. Plasmas 18, 034502 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Rafat, A., Alam, M.S. et al. Nonlinear propagation of Electron-acoustic waves in a nonextensive electron-positron-ion plasma. Journal of the Korean Physical Society 66, 941–946 (2015). https://doi.org/10.3938/jkps.66.941

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.941

Keywords

Navigation