Skip to main content
Log in

Investigation of the photoelectrochemical properties for typical ZnO nanostructures grown by using chemical vapor transport

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Typically, three kinds of ZnO nanostructures, nanowires, nanosheets, and nanorods, are synthesized by changing the reactor pressure in the chemical vapor transport method. The photoelectrochemical (PEC) properties of ZnO nanostructures were investigated by using an ultraviolet lamp with a wavelength of 365 nm and a measured intensity of 0.4 mW/cm22. Photocurrent densities of 0.61, 0.47, and 0.37 mA/cm2 were obtained for nanowires, nanosheets, and nanorods, respectively. The photoconversion efficiencies of these ZnO nanostructures under ultraviolet illumination were calculated as 73.1, 57.3, and 41.8%, respectively. The different PEC results were explained by using the effects of dimension in the nanostructures. The separation of light-induced charge formed near the surface, leading to the transfer of electron holes toward the surface and electrons toward the bulk at the photo-anode, will be higher as the dimension is decreased. The difference in the optical absorption in the PEC process could be neglected because the absorption intensities were nearly the same for the three kinds of samples, independent of both the morphology and the density. Therefore, the different PEC efficiencies could be thought to be a result of the difference in the nanostructures with different dimensions, not the result of the density of the nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  ADS  Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001).

    Article  ADS  Google Scholar 

  3. W. Abraham, A. S. Wilson, R. T. Kuykendall, Y. Zhao and J. Z. Zhang, Adv. Funct. Mater. 19, 1849 (2009).

    Article  Google Scholar 

  4. M. H. Chen, K. C. Chen, C. Y. Chang, W. C. Tsai, S. R. Liu, F. S. Hu, S. W. Chang and K. C. Hsien, Angew. Chem. Int. Edit. 49, 5966 (2010).

    Article  Google Scholar 

  5. D. S. Tilley, M. Cornuz, K. Sivula and M. Gratzel, Angew. Chem. Int. Edit. 49, 6405 (2010).

    Article  Google Scholar 

  6. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nat. Mater. 10, 456 (2011).

    Article  ADS  Google Scholar 

  7. H. Kim, M. Seol, J. Lee and K. Yong, J. Phys. Chem. C 115, 25429 (2011).

    Article  Google Scholar 

  8. T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, Int. J. Hydrogen Energy 27, 991 (2002).

    Article  Google Scholar 

  9. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

  10. E. M. Kaidashev et al., Appl. Phys. Lett. 82, 3901 (2003).

    Article  ADS  Google Scholar 

  11. T. J. Kuo, C. N. Lin, C. L. Kuo and M. H. Huang, Chem. Mater. 19, 5143 (2007).

    Article  Google Scholar 

  12. J. H. Park, H. J. Choi, Y. J. Choi, S. H. Sohn and J. G. Park, J. Mater. Chem. 14, 35 (2004).

    Article  Google Scholar 

  13. G. Z. Wang, N. G. Ma, C. J. Deng, P. Yu, C. Y. To, N. C. Hung, M. Aravind and D. H. L. Ng, Mater. Lett. 58, 2195 (2004).

    Article  Google Scholar 

  14. J. Y. Lao, J. Y. Huang, D. Z. Wang and Z. F. Ren, J. Mater. Chem. 14, 770 (2004).

    Article  Google Scholar 

  15. C. S. Lao, P. X. Gao, R. S. Yang, Y. Zhang, Y. Dai and Z. L. Wang, Chem. Phys. Lett. 417, 359 (2005).

    Google Scholar 

  16. S. L. Mensah, V. K. Kayastha, I. N. Ivanov, D. B. Geohegan and Y. K. Yap, Appl. Phys. Lett. 90, 113108 (2007).

  17. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao and Z. L. Wang, Science 309, 1700 (2005).

    Article  ADS  Google Scholar 

  18. W. L. Hughes and Z. L. Wang, Appl. Phys. Lett. 86, 043106 (2005).

  19. S. H. Dalal, D. L. Baptista, K. B. K. Teo, R. G. Lacerda, D. A. Jefferson and W. I. Milne, Nanotechnology 17, 4811 (2006).

    Article  ADS  Google Scholar 

  20. C. Ye, X. Fang, Y. Hao, X. Teng and L. Zhang, J. Phys. Chem. B 109, 19758 (2005).

    Article  Google Scholar 

  21. G. M. Walter, L. E. Warren, R. J. McKone, W. S. Boettcher, Q. Mi, A. E. Santori and S. N. Lewis, Chem. Rev. 110, 6446 (2010).

    Article  Google Scholar 

  22. Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan and G. H. Chen, Adv. Funct. Mater. 20, 2165 (2010).

    Article  Google Scholar 

  23. T. T. Duong, Q. D. Nguyen, S. K. Hong, D. Kim, S. G. Yoon and T. H. Pham, Adv. Mater. 23, 5557 (2011).

    Article  Google Scholar 

  24. J. Nowotny, C. C. Sorrell, L. R. Sheppard and T. Bak, Int. J. Hydrogen Energy 30, 521 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Ku Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, E.S., Hong, SK., Jeong, M. et al. Investigation of the photoelectrochemical properties for typical ZnO nanostructures grown by using chemical vapor transport. Journal of the Korean Physical Society 66, 832–838 (2015). https://doi.org/10.3938/jkps.66.832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.832

Keywords

Navigation