Skip to main content
Log in

Impurity reduction in a plasma by using the deuterium and helium glow discharge method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

To reduce the levels of impurities such as water, oxygen and nitrogen in a plasma chamber, we evaporated and deposited carborane (C2B10H12) powders on a silicon substrate by using a glow discharge method, and investigated the effects of boronization as functions of the carborane temperature and the rates of the flowing gases between deuterium and helium. The reduced amount of impurities after boronization was estimated by measuring the partial pressures of the corresponding gases in the chamber and the concentrations of nitrogen and oxygen in a deposited carborane film. The ratio of deuterium to hydrogen in the deposited film was analyzed by using secondary ion mass spectrometry (SIMS). When carborane powders were evaporated under a deuterium atmosphere, the residual gas analyzer showed a significant decrease in the partial pressure of water while less change was noted from the partial pressures of nitrogen and oxygen. The most efficient removal rate for water was obtained when carborane powder was flown under deuterium atmosphere at 150 °C. The SIMS data showed higher concentrations of nitrogen and oxygen in the carborane films deposited on Si substrates under a deuterium atmosphere, demonstrating that boronization under a deuterium atmosphere is an effective method to remove impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Refke, V. Philipps, M. Erdweg, E. Vietzke and J. von Seggern, J. Nucl. Mater. 212–215, 1255 (1994).

    Article  Google Scholar 

  2. S. Higashijima et al., J. Nucl. Mater. 220–222, 375 (1995).

    Article  Google Scholar 

  3. C. H. Skinner et al., Nucl. Fusion 42, 329 (2002).

    Article  ADS  Google Scholar 

  4. J. Winter et al., J. Nucl. Mater. 162–164, 713 (1989).

    Article  Google Scholar 

  5. T. Nakano, S. Higashijima, H. Kubo, J. Yagyu, T. Arai, N. Asakura and K. Itami, J. Nucl. Mater. 313–316, 149 (2003).

    Article  Google Scholar 

  6. A. Sykes et al., Nucl. Fusion 41, 1423 (2001).

    Article  ADS  Google Scholar 

  7. J. Li et al., Nucl. Fusion 39, 973 (1999).

    Article  ADS  Google Scholar 

  8. X. Gao et al., J. Nucl. Mater. 390–391, 864 (2009).

    Article  Google Scholar 

  9. D. Tafalla and F. L. Tabares, Vacuum 67, 393 (2002).

    Article  Google Scholar 

  10. C. H. Wu, L. X. Shi, Q. N. Li, J. Zhao, M. Selke, H. Yan and X. M. Wang, J. Nanosci. Nanotechnol. 11, 3091 (2011).

    Article  Google Scholar 

  11. G. L. Jackson et al., J. Nucl. Mater. 196, 236 (1992).

    Article  ADS  Google Scholar 

  12. J. H. Yuan and K. M. Liew, J. Nanosci. Nanotechnol. 12, 2617 (2012).

    Article  Google Scholar 

  13. P. Antoniammal and D. Arivuoli, J. Nanosci. Nanotechnol. 12, 993 (2012).

    Article  Google Scholar 

  14. R. J. Zaldivar, R. W. Kobayashi and G. S. Rellick, Carbon 29, 1145 (1991).

    Article  Google Scholar 

  15. A. Ganzalez-Campo, B. Boury, F. Teixidor and R. Nunez, Chem Mater. 18, 4344 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, J. Impurity reduction in a plasma by using the deuterium and helium glow discharge method. Journal of the Korean Physical Society 66, 465–469 (2015). https://doi.org/10.3938/jkps.66.465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.465

Keywords

Navigation