Skip to main content
Log in

A pilot investigation on laser annealing for thin-film solar cells: Crystallinity and optical properties of laser-annealed CdTe thin films by using an 808-nm diode laser

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Compared to conventional furnace and rapid thermal annealing, laser annealing for heterojunctioned thin-film solar cells has several advantages including excellent annealing selectivity to the under-layers with a localized high temperature for a short process time. A continuous wave 808-nm diode laser was used for the laser annealing process of CdTe thin films for various output powers. The grains in the laser-annealed CdTe thin films grew along the C (111), H (110), and C (311) planes. Laser annealing resulted in an increase in grain size and a decrease in surface roughness. The optical band gap energy of the CdTe thin films was affected directly by the grain size, showing 1.460 eV and 1.415 eV for the as-deposited and laser-annealed CdTe thin films, respectively. The absorbance of the CdTe thin films with better crystallinity showed an improved value of 99.5–99.9% in the visible spectral region after laser annealing at an output power of 0.91 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Sands, J. E. Nicholls, J. H. C. Hogg, S. Chalk, F. X. Wagner, W. E. Hagstona, M. O’Neill, B. Lunn and D. E. Ashenford, J. Cryst. Growth 184/185, 114 (1998).

    Article  Google Scholar 

  2. W. Tang, Z. Chen, S. He and H. Zhang, Procedia Chemistry 1, 786 (2009).

    Article  Google Scholar 

  3. L. Schade, S. Franzka, S. Hardt, H. Wiggers and N. Hartmann, Appl. Surf. Sci. (2013) doi:10.1016/j.apsusc.2012.11.077.

    Google Scholar 

  4. M. G. Kang, K. H. Cho, S. M. Oh, Y. H. Do, C. Y. Kang, S. Kim and S. J. Yoon, Curr. Appl. Phys. 11, S66 (2011).

    Article  ADS  Google Scholar 

  5. A. Matsuno, E. Takii, T. Eto, K. Kurobe and K. Shibahara, Nucl. Instrum. Methods Phys. Res., Sect. B 237, 136 (2005).

    Article  ADS  Google Scholar 

  6. M. Hädrich, C. Kraft, C. Löffler, H. Metzner, U. Reislöhner and W. Witthuhn, Thin Solid Films 517, 2282 (2009).

    Article  ADS  Google Scholar 

  7. T. M. Razykov et al., Sol. Energy 83, 90 (2009).

    Article  Google Scholar 

  8. A. J. Al-Douri, F. Y. Al-Shakily, A. A. Alnajjar and M. F. A. Alias, Adv. Condens. Matter Phys. 2011, 910967 (2011).

    Google Scholar 

  9. Z. Said-Bacar, Y. Leroy, F. Antoni, A. Slaoui and E. Fogarassy, Appl. Surf. Sci. 257, 5127 (2011).

    Article  ADS  Google Scholar 

  10. S. G. Ryu, I. Gruber, C. P. Grigoropoulos, D. Poulikakos and S. J. Moon, Thin Solid Films 520, 6724 (2012).

    Article  ADS  Google Scholar 

  11. N. H. Kim, J. S. Park and W. S. Lee, J. Korean Phys. Soc. 59, 2286 (2011).

    Article  Google Scholar 

  12. N. H. Kim, K. D. Myung, G. B. Cho and W. S. Lee, J. Korean Phys. Soc. 60, 425 (2012).

    Article  ADS  Google Scholar 

  13. G. K. Bhaumik, A. K. Nath and S. Basu, Mater. Sci. Eng., B 52, 25 (1998).

    Article  Google Scholar 

  14. A. Medvid, V. G. Litovchenko, D. Korbutjak, S. G. Krilyuk, L. L. Fedorenko and Y. Hatanaka, Radiat. Meas. 33, 725 (2001).

    Article  Google Scholar 

  15. G. M. Davis and M. C. Gower, Appl. Phys. Lett. 50, 1286 (1987).

    Article  ADS  Google Scholar 

  16. K. M. Garadkar, S. J. Pawar, P. P. Hankare and A. A. Patil, J. Alloys Compd. 491, 77 (2010).

    Article  Google Scholar 

  17. N. H. AI-Hardan, K. T. AI-Rasoul and S. A. Hussain, J. Al-Qadisiyah Pure Sci. 15, 1 (2010).

    Google Scholar 

  18. J. C. Osuwa and N. I. Chigbo, Chalcogenide Lett. 9, 501 (2009).

    Google Scholar 

  19. X. Li, T. A. Gessert, R. J. Matson, J. F. Hall and T. J. Coutts, J. Vac. Sci. Technol., A 12, 1608 (1994).

    Article  ADS  Google Scholar 

  20. B. D. Cullity, Elements of X-Ray Diffraction, 3rd ed. (Addison-Wesley, Reading, Mass., London, 1967).

    Google Scholar 

  21. G. Gordillo, J. M. Flórez and L. C. Hernández, Sol. Energy Mater. Sol. Cells 37, 273 (1995).

    Article  Google Scholar 

  22. A. Mahadkar, A. Chauhan, M. Thakurdesai and D. Gaikwad, in 2008 Physics Education Research Conference Part of the AIP Conference Proceedings series. Edmonton (Alberta, Canada, July 23–24, 2008), Chap. 1004, p. 305.

    Google Scholar 

  23. S. Neretina, N. V. Sochinskii and P. Mascher, J. Electron. Mater. 34, 786 (2005).

    Article  ADS  Google Scholar 

  24. J. H. Lee, H. Y. Lee, Y. K. Park, S. H. Shin and K. J. Park, Jpn. J. Appl. Phys. 37, 3357 (1998).

    Article  ADS  Google Scholar 

  25. A. Romeo, D. L. Bätzner, H. Zogg and A. N. Tiwari, Thin Solid Films 361, 420 (2000).

    Article  ADS  Google Scholar 

  26. S. R. Aid, S. Matsumoto, G. Fuse and S. Sakuragi, Phys. Status Solidi A 208, 2772 (2011).

    Article  ADS  Google Scholar 

  27. R. O. Bell, M. Toulemonde and P. Siffen, Appl. Phys. 19, 313 (1979).

    Article  ADS  Google Scholar 

  28. C. Y. Tsay and M. C. Wang, Ceram. Int. 39, 469 (2013).

    Article  Google Scholar 

  29. N. H. Kim, S. H. Ryu, H. S. Noh and W. S. Lee, Mater. Sci. Semicon. Process. 15, 125 (2012).

    Article  Google Scholar 

  30. F. Meng, T. Sun and R. Cui, Semicond. Sci. Technol. 15, 926 (2000).

    Article  ADS  Google Scholar 

  31. Q. Xu, R. D. Hong, H. L. Huang, Z. F. Zhang, M. K. Zhang, X. P. Chen and Zh. Y. Wu, Opt. Laser Technol. 45, 513 (2013).

    Article  ADS  Google Scholar 

  32. X. Zhang, H. Zeng and W. Cai, Mater. Lett. 63, 191 (2009).

    Article  Google Scholar 

  33. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park and A. Schulte, Appl. Surf. Sci. 255, 4129 (2009).

    Article  ADS  Google Scholar 

  34. D. S. Reddy, K. N. Rao, K. R. Gunasekhar, N. K. Reddy, K. S. Kumar and P. S. Reddy, Mater. Res. Bull. 43, 3245 (2008).

    Article  Google Scholar 

  35. Y. Gu, X. Li, W. Yu, X. Gao, J. Zhao and C. Yang, J. Cryst. Growth 305, 36 (2007).

    Article  ADS  Google Scholar 

  36. S. Wageh, A. A. Higazy and M. A. Algradee, J. Mod. Phys. 2, 913 (2011).

    Article  Google Scholar 

  37. C. V. Ramana, R. J. Smith and O. M. Hussain, Phys. Status Solidi A 199, R4 (2003).

    Article  ADS  Google Scholar 

  38. J. M. P. Coelho, M. A. Abreu and F. C. Rodrigues, Polym. Test. 23, 307 (2004).

    Article  Google Scholar 

  39. D. Souri and K. Shomalian, J. Non-Cryst. Solids 355, 1597 (2009).

    Article  ADS  Google Scholar 

  40. J. M. González-Leal, A. Ledesma, A. M. Bernal-Oliva, R. Prieto-Alcón, E. Márquez, J. A. Angel and J. Cárabe, Mater. Lett. 39, 232 (1999).

    Article  Google Scholar 

  41. R. Brüggemann, P. Reinig and M. Hölling, Thin Solid Films 427, 358 (2003).

    Article  ADS  Google Scholar 

  42. G. L. Liu, Z. R. Huang, X. J. Liu and D. L. Jiang, Chin. Phys. Lett. 25, 1135 (2008).

    Article  ADS  Google Scholar 

  43. H. Pan, D. Lee, S. H. Ko, C. P. Grigoropoulos, H. K. Park and T. Hoult, Appl. Phys. A 104, 29 (2011).

    Article  ADS  Google Scholar 

  44. X. Wang, Y. Bellouard and J. J. Vlassak, Acta Mater. 53, 4955 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinseong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, NH., Park, C.I. & Park, J. A pilot investigation on laser annealing for thin-film solar cells: Crystallinity and optical properties of laser-annealed CdTe thin films by using an 808-nm diode laser. Journal of the Korean Physical Society 62, 502–507 (2013). https://doi.org/10.3938/jkps.62.502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.502

Keywords

Navigation