Skip to main content
Log in

Characterization and optical properties of Eu-doped cubic nano ceria synthesized by using the co-precipitation-hydrothermal route

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A series of nano ceria samples containing 0 to 2 mol% europium were synthesized following the co-precipitation hydrothermal technique. The X-ray diffraction patterns showed peaks corresponding to the fluorite structure of cubic ceria with shifting of the peak positions, but did not show any Eu-related peaks. The fourier transform infrared (FTIR) spectra of all the samples showed four bands that could be attributed to Ce-O stretching vibrations, formation of nano-crystalline particles, -HOH bending, and -OOH and -OH stretching vibrations. The Raman spectra of all the samples showed a sharp and intense Raman shift at around 460–462 cm−1 corresponding to the triplydegenerate F 2g mode. The intensity of the Raman peaks showed variations in intensities. The transmission electron microscope (TEM) images of typical samples revealed that the shapes and the sizes of the particles were not much affected after Eu doping in the studied range though Eu doping resulted in agglomerations of nanoparticles. Broad absorption peaks centered at 292, 332, 336, 310, and 294 nm were observed for 0, 0.25, 0.5, 1, and 2 mol % Eu-doped ceria in the UVVis spectra with direct band gaps of 3.6, 2.75, 2.75, 2.75, and 3.25 eV, respectively. The smaller values of the indirect band gap indicated that Eu-doped nanoparticles were available to assist the indirect electron transition from the valence band to the conduction band. The emission peaks for the spectra obtained by exciting at 300 nm were observed at 355, 405, 396, 387, and 380 nm for pure ceria sample and 0.25, 0.5, 1, and 2 mol% Eu-doped samples, confirming the red shift in all the doped samples. The spectra for Eu-doped samples obtained by exciting at 500 nm showed three peaks in the orange-red region corresponding to the 5D0 → 7F j (j = 0 − 4) transitions of Eu3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. S. Putna, J. Stubenrauch, J. M. Vohs and R. J. Gorte, Langmuir 11, 4832 (1995).

    Article  Google Scholar 

  2. C. T. Campbell and C. H. F. Peden, Science 309, 713 (2005).

    Article  Google Scholar 

  3. K. B. Zhou, X. Wang, X. M. Sun, Q. Peng and Y. D. Li, J. Catal. 229, 206 (2005).

    Article  Google Scholar 

  4. P. Jasinski, T. Suzuki and H. U. Anderson, Sens. Actuators, B 95, 73 (2003).

    Article  Google Scholar 

  5. S. Tsunekawa, T. Fukuda and A. J. Kasuya, Appl. Phys. 87, 1318 (2000).

    Article  Google Scholar 

  6. R. Si, Y. W. Zhang, L. P. You and C. H. Yan, Angew. Chem. Int. Ed. 44 3256, (2005).

    Article  Google Scholar 

  7. M. Inoue, M. Kimura and T. Inui, Chem. Commun. 957 (1999).

  8. M. Hirano, Y. Fukuda, H. Iwata, Y. Hotta and M. Inagaki, J. Am. Ceram. Soc. 83, 1287 (2000).

    Article  Google Scholar 

  9. H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu and C. H. J. Yan, Phys. Chem. B 109, 24380 (2005).

    Article  Google Scholar 

  10. A. Sehgal, Y. Lalatonne, J. F. Berret and M. Morvan, Langmuir 21, 9359 (2005).

    Article  Google Scholar 

  11. S. Yang and L. Gao, J. Am. Chem. Soc. 128, 9330 (2006).

    Article  Google Scholar 

  12. F. Zhang, S. W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson and I. P. Herman, Appl. Phys. Lett. 80, 127 (2002).

    Article  ADS  Google Scholar 

  13. T. Masui, K. Fujiwara, K. Machida and G. Adachi, Chem. Mater. 9, 2197 (1997).

    Article  Google Scholar 

  14. A. Bumajdad, M. I. Zaki, J. Eastoe and L. Pasupulety, Langmuir 20, 11223 (2004).

    Article  Google Scholar 

  15. H. Gu and M. D. Soucek, Chem. Mater. 19, 1103 (2007).

    Article  Google Scholar 

  16. T. Yu, J. Joo, Y. I. Park and T. Hyeon, Angew. Chem. Int. Ed. 44, 7411 (2005).

    Article  Google Scholar 

  17. L. Mirervini, M. O. Zacate and R. W. Grimes, Solid State Ionics 116, 339 (1999).

    Article  Google Scholar 

  18. E. Mamonto and T. Egami, J. Phys. Chem. Solids 61, 1345 (2000).

    Article  ADS  Google Scholar 

  19. J. Wu, G. L. Wang, D. Y. Jin, J. L. Yuan, Y. F. Guan and J. Piper, Chem. Commun. 3, 365 (2008).

    Article  Google Scholar 

  20. R. D. Shannon, Acta Crystallogr. Sec. A — Crys. A32, 751 (1976).

    Article  ADS  Google Scholar 

  21. S. Yamazaki, T. Matsui, T. Ohashi and Y. Arita, Solid State Ionics 136, 913 (2000).

    Article  Google Scholar 

  22. Y. H. Willinton, A. C. Miguel, R. S. Francisca and J. A. Odriozola, J. Phys. Chem. C 113, 5629 (2009).

    Article  Google Scholar 

  23. Z. Wang, Z. Quen and J. Lin, Inorg. Chem. 46, 5237 (2007).

    Article  Google Scholar 

  24. L. Li, H. K. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang and H. S. J. Lee, Phys. Chem. C 113, 610 (2009).

    Article  Google Scholar 

  25. M. Leoni, R. D. Maggio, S. Polizzi and P. Scardi, J. Am. Ceram. Soc. 87, 1133 (2004).

    Article  Google Scholar 

  26. S. Deshpande, S. Patil and S. V. N. T. Kuchibhatla and S. Seal, Appl. Phys. Lett. 87, 133113 (2005).

    Article  ADS  Google Scholar 

  27. W. Y. Hernandez, M. A. Centeno, F. Romero-Sarria and J. A. Odriozola, J. Phys. Chem. C 113, 5629 (2009).

    Article  Google Scholar 

  28. A. Kumar, S. Babu, A. S. Karakoti, A. Schulte and S. Seal, Langmuir 25, 10998 (2009).

    Article  Google Scholar 

  29. H. Shinjoh, J. Alloys Compd. 408, 1061 (2006).

    Article  Google Scholar 

  30. J. S. Lee and S. C. Choi, Mater. Lett. 58, 390 (2004).

    Article  Google Scholar 

  31. J. Y. Ying and A. Tschope, Chem. Eng. J. 64, 225 (1996).

    Google Scholar 

  32. M. Ornatska, E. Sharpe, D. Andreescu and S. Andreescu, Anal. Chem. 83, 4273 (2011).

    Article  Google Scholar 

  33. L. F. Chen, G. Gonzalez, J. A. Wang, L. E. Norena, A. Toledo, S. Castillo and M. Moran-Pineda, Appl. Surf. Sci. 243, 319 (2005).

    Article  ADS  Google Scholar 

  34. Z. D. D. Mitrovic et al., Solid State Commun. 137, 387 (2006).

    Article  ADS  Google Scholar 

  35. S. Babu, A. Schulte and S. Seal, Appl. Phys. Lett. 92, 123112 (2008).

    Article  ADS  Google Scholar 

  36. H. Z. Song, H. B. Wang, S. W. Zha, D. K. Peng and G. Y. Meng, Solid State Ionics 156, 249 (2003).

    Article  Google Scholar 

  37. F. Gao, Q. Lu and S. Komarneni, J. Nanosci. Nanotechnol. 6, 3812 (2006).

    Article  Google Scholar 

  38. J. R. McBride, K. C. Hass, B. D. Poindexter and W. H. Weber, J. Appl. Phys. 76, 2435 (1994).

    Article  ADS  Google Scholar 

  39. P. Fornasiero, G. Balducci, R. Di Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero and M. Graziani, J. Catal. 164, 173 (1996).

    Article  Google Scholar 

  40. S. Patil, S. Seal, Y. Guo, A. Schulte and J. Norwood, Appl. Phys. Lett. 88, 243110 (2006).

    Article  ADS  Google Scholar 

  41. C. S. Ciobanu, S. L. Iconaru, F. Massuyeau, L.V. Constantin, A. Costescu and D. Predoi, J. Nanomaterials (2012), in press, doi:10.1155/2012/942801.

  42. H. Y. Willinton, C. A. Miguel, R. S. Francisca and O. A. Jose, J. Phys. Chem. C, 113, 5629 (2009).

    Article  Google Scholar 

  43. H. Gleiter, Zeitschr. Metallk. 86, 78 (1995).

    Google Scholar 

  44. K. B. Sundaram and P. Wahid, Phys. Status Solidi B 161, K63 (1990).

    Article  ADS  Google Scholar 

  45. Z. C. Orel and B. Orel, Phys. Status Solidi B 186, K33 (1994).

    Article  ADS  Google Scholar 

  46. T. Yu, B. Lim and Y. Xia, Angew. Chem. Int. Ed. 49, 4484 (2010).

    Article  Google Scholar 

  47. C. Chai, S. Yang, Z. Liu, M. Liao and N. Chen, Chin. Sci. Bull. 48, 1198 (2003).

    Google Scholar 

  48. H. I. Chen and H. Y. Chang, Solid State Commun. 133, 593 (2005).

    Article  ADS  Google Scholar 

  49. P. Patsalas, S. Logothetidis and C. Metaxa, Appl. Phys. Lett. 81, 466 (2002).

    Article  ADS  Google Scholar 

  50. H. Zhang, M. Bayne, S. Fernando, B. Legg, M. Zhu, P. R. Lee and J. F. J. Banfield, Phys. Chem. C, 115, 17704 (2011).

    Article  Google Scholar 

  51. A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).

    Article  ADS  Google Scholar 

  52. S. H. Yu, A. H. Colfen, Colloids Surf. A 243, 49 (2004).

    Article  Google Scholar 

  53. F. Gao, G. H. Li, J. H. Zhang, F. G. Qin, Z. Y. Yao, Z. K. Liu, Z. G. Wang and L.Y. Lin, Chin. Phys. Lett. 18, 443 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamata Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, S.K., Mohapatra, M. & Anand, S. Characterization and optical properties of Eu-doped cubic nano ceria synthesized by using the co-precipitation-hydrothermal route. Journal of the Korean Physical Society 62, 297–304 (2013). https://doi.org/10.3938/jkps.62.297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.297

Keywords

Navigation