Skip to main content
Log in

QCD vacuum for hadrons

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In Quantum Chromodynamics (QCD), non-linear gluonic interactions are taken to play important roles in establishing strong interaction pictures such as nonperturbative vacuum structures and various loop contributions to each physical process. One of these roles has been formulated as the gluon condensates which affect the spectra of quarkonium states and modify the forms of quark and gluon propagators. Especially, the dimension-2 condensate 〈A 2 μ 〉 can be used to define gauge slices which can be combined to form in-hadron regions. In this paper, we will try to construct the topological spaces of in-hadron regions and to determine the structures of QCD vacuum for hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Brodsky and R. Shrock, Phys. Lett. B 666, 95 (2008).

    Article  ADS  Google Scholar 

  2. M. A. Shifman et al., Phys. Lett. B 77, 80 (1978).

    Article  ADS  Google Scholar 

  3. M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979); ibid. 147, 448 (1979); ibid. 147, 519 (1979).

    Article  ADS  Google Scholar 

  4. T. I. Larsson, Phys. Rev. D 32, 956 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  5. M. J. Lavelle and M. Schaden, Phys. Lett. B 208, 297 (1988).

    Article  ADS  Google Scholar 

  6. E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981).

    Article  ADS  Google Scholar 

  7. N. G. Hyun and J. B. Choi, J. Korean Phys. Soc. 28, 20 (1995); ibid. 28, 671 (1995).

    Google Scholar 

  8. D. Gromes, Phys. Lett. B 115, 482 (1982).

    Article  ADS  Google Scholar 

  9. F. V. Gubarev, L. Stodolsky and V. I. Zakharov, Phys. Rev. Lett. 86, 2220 (2001).

    Article  ADS  Google Scholar 

  10. Ph. Boucaud et al., Phys. Lett. B 493, 315 (2000); Phys. Rev. D 63, 114003 (2001).

    Article  ADS  Google Scholar 

  11. K. I. Kondo and T. Shinohara, Phys. Lett. B 491, 263 (2000).

    Article  ADS  Google Scholar 

  12. L. S. Celenza and C. M. Shakin, Phys. Rev. D 34, 1591 (1986).

    Article  ADS  Google Scholar 

  13. E. S. Abers and B. W. Lee, Phys. Rep. 9, 1 (1973).

    Article  ADS  Google Scholar 

  14. K. I. Kondo, Phys. Lett. B 514, 335 (2001).

    Article  ADS  MATH  Google Scholar 

  15. E. J. Kim et al., J. Korean Phys. Soc. 58, L1053 (2011).

    Article  Google Scholar 

  16. S. J. Brodsky and R. Shrock, arXiv:0803.2541.

  17. S. V. Mikhailov and A. V. Radyushkin, Phys. Rev. D 45, 1754 (1992).

    Article  ADS  Google Scholar 

  18. E. J. Kim, J. B. Choi and M. Q. Whang, J. Korean Phys. Soc. 56, 1787 (2010).

    Article  Google Scholar 

  19. D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 84, 014025 (2011).

    Article  ADS  Google Scholar 

  20. T. Ichikawa et al., Phys. Rev. Lett. 107, 112501 (2011).

    Article  ADS  Google Scholar 

  21. J. B. Choi, J. Korean Phys. Soc. 27, 605 (1994); ibid. 30, 28 (1997).

    Google Scholar 

  22. O. Andreev, Phys. Rev. D 82, 086012 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Bum Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, EJ., Choi, J.B. QCD vacuum for hadrons. Journal of the Korean Physical Society 61, 1215–1222 (2012). https://doi.org/10.3938/jkps.61.1215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1215

Keywords

Navigation