Skip to main content
Log in

Geometric thermodynamics of a schwarzschild-AdS black hole with a cosmological constant as a state variable

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The thermodynamics of the Schwarzschild-AdS black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Different choices of the metric in the equilibrium state manifold are used in order to reproduce the Hawking-Page phase transition as a divergence of the thermodynamical curvature scalar. We show that the enthalpy and the total energy representations of GTD do not reproduce the transition while the entropy representation gives the expected behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  2. S. W. Hawking and D. N. Page, Commun. Math. Phys. 87, 577 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  3. P. C. W. Davies, Proc. R. Soc. London, Ser. A 353, 499 (1977).

    Article  ADS  Google Scholar 

  4. J. Louko and S. N. Winters-Hilt, Phys. Rev. D 54, 2647 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Phys. Rev. D 60, 104026 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. G. Cai, J. Korean Phys. Soc. 33, S477 (1998); R. G. Cai and J. H. Cho, Phys. Rev. D 60, 067502 (1999).

    Google Scholar 

  7. M. Henneaux and C. Teitelboim, Phys. Lett. B 143, 415 (1984); M. Henneaux and C. Teitelboim, Phys. Lett. B 222, 195 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  8. C. Teitelboim, Phys. Lett. B 158, 293 (1985).

    Article  ADS  Google Scholar 

  9. M. M. Caldarelli, G. Cognola and D. Klemm, Classical Quantum Gravity 17, 399 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S. Wang, S-Q. Wu, F. Xie and L. Dan, Chin. Phys. Lett. 23, 1096 (2006).

    Article  ADS  Google Scholar 

  11. Y. Sekiwa, Phys. Rev. D 73, 084009 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Larranaga, arXiv:0711.0012 [gr-qc].

  13. H. Quevedo and A. Sanchez. J. High Energy Phys. 0809, 034 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. D. Brown and C. Teitelboim, Phys. Lett. B 195, 177 (1987).

    Article  ADS  Google Scholar 

  15. J. D. Brown and C. Teitelboim, Nucl. Phys. B 297, 787 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Kastor, S. Ray and J. Traschen, Classical Quantum Gravity 26, 195011 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  17. B. Dolan, Classical Quantum Gravity 28, 125020 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Cvetic, S. Nojiri and S. D. Odinstov, Nucl. Phys. B 628, 295 (2002).

    Article  ADS  MATH  Google Scholar 

  19. G. Ruppeiner, Phys. Rev. A 20, 1608 (1979); Phys. Rev. D 75, 024037 (2007); Phys. Rev. D 78, 024016 (2007).

    Article  ADS  Google Scholar 

  20. F. Weinhold, J. Chem. Phys. 63, 2479; 2484; 2488; 2496 (1975); J. Chem. Phys. 65, 558 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  21. H. Quevedo, J. Math. Phys. 48, 013506 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Quevedo. Gen. Relativ. Gravitation 40, 971 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. H. Quevedo and A. Sanchez, Phys. Rev. D 79, 024012 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  24. H. Quevedo, A. Sanchez, S. Taj and A. Vazquez, arXiv: 1010.5599 [gr-qc], arXiv:1011.0122 [gr-qc].

  25. P. C. W. Davies, Rep. Prog. Phys. 41, 1313 (1978).

    Article  ADS  Google Scholar 

  26. H. Liu, H. Lu, M. Luo and K, Shao, J. High Energy Phys. 1012, 054 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  27. Q. Cao, Y. Chen and K. Shao, Phys. Rev. D 83, 064015 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Larrañga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larrañga, A., Cárdenas, A. Geometric thermodynamics of a schwarzschild-AdS black hole with a cosmological constant as a state variable. Journal of the Korean Physical Society 60, 987–992 (2012). https://doi.org/10.3938/jkps.60.987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.987

Keywords

Navigation